找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning in Graphical Models; Michael I. Jordan Book 1998 Springer Science+Business Media Dordrecht 1998 Bayesian network.Latent variable

[复制链接]
楼主: Enlightening
发表于 2025-3-23 12:52:29 | 显示全部楼层
发表于 2025-3-23 13:51:14 | 显示全部楼层
发表于 2025-3-23 19:24:39 | 显示全部楼层
An Introduction to Variational Methods for Graphical Modelsxamples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, showing how upper and lower bounds can be f
发表于 2025-3-23 23:41:38 | 显示全部楼层
Improving the Mean Field Approximation Via the Use of Mixture Distributionshods make a completely factorized approximation to the posterior, which is unlikely to be accurate when the posterior is multimodal. Indeed, if the posterior is multi-modal, only one of the modes can be captured. To improve the mean field approximation in such cases, we employ mixture models as post
发表于 2025-3-24 04:27:40 | 显示全部楼层
Introduction to Monte Carlo Methods high—dimensional problems such as arise in inference with graphical models. After the methods have been described, the terminology of Markov chain Monte Carlo methods is presented. The chapter concludes with a discussion of advanced methods, including methods for reducing random walk behaviour..For
发表于 2025-3-24 08:01:14 | 显示全部楼层
发表于 2025-3-24 11:45:54 | 显示全部楼层
发表于 2025-3-24 14:55:02 | 显示全部楼层
发表于 2025-3-24 19:13:31 | 显示全部楼层
发表于 2025-3-25 01:03:35 | 显示全部楼层
A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the distribution over the unobserved variables. From this perspective, it is easy to justify an incremental variant of the EM algorithm in which the distribu
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 01:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表