找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learn PySpark; Build Python-based M Pramod Singh Book 2019 Pramod Singh 2019 PySpark.Python.Machine Learning.Deep Learning.Big Data.Spark.D

[复制链接]
查看: 8101|回复: 41
发表于 2025-3-21 18:45:55 | 显示全部楼层 |阅读模式
书目名称Learn PySpark
副标题Build Python-based M
编辑Pramod Singh
视频video
概述Covers entire range of PySpark’s offerings from streaming to graph analytics.Build standardized work flows for pre-processing and builds machine learning and deep learning models on big data sets.Disc
图书封面Titlebook: Learn PySpark; Build Python-based M Pramod Singh Book 2019 Pramod Singh 2019 PySpark.Python.Machine Learning.Deep Learning.Big Data.Spark.D
描述Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges..You‘ll start by reviewing PySpark fundamentals, such as Spark’s core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. .You‘ll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github..What You‘ll Learn.Develop pipelines for streaming data processing using PySpark .Build Machine Learning & Deep Learning models using PySpark latest offerings.Use graph analytics using PySpark .Create Sequence Embeddings from Text data .Who This Book is For 
出版日期Book 2019
关键词PySpark; Python; Machine Learning; Deep Learning; Big Data; Spark; Data Processing; AirFlow; Supervised Mach
版次1
doihttps://doi.org/10.1007/978-1-4842-4961-1
isbn_softcover978-1-4842-4960-4
isbn_ebook978-1-4842-4961-1
copyrightPramod Singh 2019
The information of publication is updating

书目名称Learn PySpark影响因子(影响力)




书目名称Learn PySpark影响因子(影响力)学科排名




书目名称Learn PySpark网络公开度




书目名称Learn PySpark网络公开度学科排名




书目名称Learn PySpark被引频次




书目名称Learn PySpark被引频次学科排名




书目名称Learn PySpark年度引用




书目名称Learn PySpark年度引用学科排名




书目名称Learn PySpark读者反馈




书目名称Learn PySpark读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:15:58 | 显示全部楼层
发表于 2025-3-22 03:14:43 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-4961-1PySpark; Python; Machine Learning; Deep Learning; Big Data; Spark; Data Processing; AirFlow; Supervised Mach
发表于 2025-3-22 07:10:19 | 显示全部楼层
Pramod SinghCovers entire range of PySpark’s offerings from streaming to graph analytics.Build standardized work flows for pre-processing and builds machine learning and deep learning models on big data sets.Disc
发表于 2025-3-22 09:34:04 | 显示全部楼层
发表于 2025-3-22 15:45:29 | 显示全部楼层
ng data processing using PySpark .Build Machine Learning & Deep Learning models using PySpark latest offerings.Use graph analytics using PySpark .Create Sequence Embeddings from Text data .Who This Book is For 978-1-4842-4960-4978-1-4842-4961-1
发表于 2025-3-22 20:27:31 | 显示全部楼层
发表于 2025-3-22 22:10:54 | 显示全部楼层
发表于 2025-3-23 04:51:33 | 显示全部楼层
Pramod Singhnts as well as to the increasing of summer precipitations. These events notoriously produce high runoff, while infiltration is quite limited. Here this issue is investigated looking at long timeseries of precipitations and piezometric data for two aquifers in south Apulia, southeast Italy.
发表于 2025-3-23 07:54:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 18:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表