找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lattice Rules; Numerical Integratio Josef Dick,Peter Kritzer,Friedrich Pillichshammer Book 2022 The Editor(s) (if applicable) and The Autho

[复制链接]
楼主: 去是公开
发表于 2025-3-28 18:08:12 | 显示全部楼层
发表于 2025-3-28 19:07:25 | 显示全部楼层
发表于 2025-3-28 23:11:13 | 显示全部楼层
Lattice Rules in the Randomized Setting, We present a randomized algorithm . for numerical integration of elements of the weighted Korobov space . that uses at most . integration nodes and that is based on rank-1 lattice rules as building blocks.
发表于 2025-3-29 05:05:21 | 显示全部楼层
Stability of Lattice Rules, it for a space with different parameters? Do we still get a fast rate of convergence? In other words, we ask whether lattice rules are stable with respect to a change of parameters. In the following we provide some results in this direction.
发表于 2025-3-29 08:01:19 | 显示全部楼层
,,,, functions in the Korobov space in the .-norm. Obviously, .-approximation is in general a much more difficult task than .-approximation, so it is, a priori, not clear whether lattice rules can help also in the more demanding .-case. This is an interesting problem, and there are several results showi
发表于 2025-3-29 11:45:19 | 显示全部楼层
Multiple Rank-1 Lattice Point Sets,proximation than when using ordinary rank-1 lattice point sets (see Chapters .and.). The basic idea of multiple lattice point sets is to consider the “union” of several rank-1 lattice point sets and to use them suitably in an approximation algorithm. In order to find good multiple lattice point sets
发表于 2025-3-29 16:08:48 | 显示全部楼层
发表于 2025-3-29 22:45:15 | 显示全部楼层
发表于 2025-3-30 00:19:15 | 显示全部楼层
发表于 2025-3-30 06:42:41 | 显示全部楼层
Josef Dick,Peter Kritzer,Friedrich Pillichshammermerika; diese Baumriesen erreichen ein Alter von zirka 500 Jahren, eine Höhe bis 380 Fuß engl., einen Durchmesser bis 15 Fuß engl., und einige haben einen Kubikinhalt von 142 cbm aufgewiesen. In gewissen Gegenden erreichen ganze Waldungen eine Durchschnittshöhe von 250 Fuß und der Durchschnittsdurch
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 00:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表