找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Large Deviations and Asymptotic Methods in Finance; Peter K. Friz,Jim Gatheral,Josef Teichmann Conference proceedings 2015 Springer Intern

[复制链接]
楼主: SORB
发表于 2025-3-28 16:00:55 | 显示全部楼层
,A Remark on Gatheral’s ‘Most-Likely Path Approximation’ of Implied Volatility,We give a new proof of the representation of implied volatility as a time-average of weighted expectations of local or stochastic volatility. With this proof we clarify the question of existence of ‘forward implied variance’ in the original derivation of Gatheral, who introduced this representation in his book ‘The Volatility Surface’.
发表于 2025-3-28 22:12:27 | 显示全部楼层
On Small Time Asymptotics for Rough Differential Equations Driven by Fractional Brownian Motions,We survey existing results concerning the study in small times of the density of the solution of a rough differential equation driven by fractional Brownian motions. We also slightly improve existing results and discuss some possible applications to mathematical finance.
发表于 2025-3-29 02:54:52 | 显示全部楼层
On Singularities in the Heston Model,In this note we provide characterization of the singularities of the Heston characteristic function. In particular, we show that all the singularities are pure imaginary.
发表于 2025-3-29 06:04:06 | 显示全部楼层
Small-Time Asymptotics for the At-the-Money Implied Volatility in a Multi-dimensional Local Volatil, [.]) derived highly accurate analytic formulas for prices and implied volatilities of such options when the options are not at the money. We now extend these results to the ATM case. Moreover, we also derive similar formulas for the local volatility of the basket.
发表于 2025-3-29 08:14:04 | 显示全部楼层
,Extrapolation Analytics for Dupire’s Local Volatility,ses our approximation formula from a practical and numerical perspective, the present paper focuses on rigorous proofs of the approximations. We apply the saddle point method (Heston model) and Hankel contour integration (variance gamma model).
发表于 2025-3-29 12:24:10 | 显示全部楼层
发表于 2025-3-29 18:44:23 | 显示全部楼层
发表于 2025-3-29 21:21:48 | 显示全部楼层
发表于 2025-3-30 01:44:37 | 显示全部楼层
发表于 2025-3-30 07:53:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 00:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表