找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Laplacian Eigenvectors of Graphs; Perron-Frobenius and Türker Biyikoğu,Josef Leydold,Peter F. Stadler Book 2007 Springer-Verlag Berlin Heid

[复制链接]
查看: 47532|回复: 36
发表于 2025-3-21 18:50:51 | 显示全部楼层 |阅读模式
书目名称Laplacian Eigenvectors of Graphs
副标题Perron-Frobenius and
编辑Türker Biyikoğu,Josef Leydold,Peter F. Stadler
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Laplacian Eigenvectors of Graphs; Perron-Frobenius and Türker Biyikoğu,Josef Leydold,Peter F. Stadler Book 2007 Springer-Verlag Berlin Heid
描述.Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) “Geometric” properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors...The volume investigates the structure of eigenvectors and looks at the number of their sign graphs (“nodal domains”), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology..
出版日期Book 2007
关键词Eigenvector; Graph; Perron-Frobenius Theorem; algorithms; discrete Dirichlet problem; graph Laplacian; nod
版次1
doihttps://doi.org/10.1007/978-3-540-73510-6
isbn_softcover978-3-540-73509-0
isbn_ebook978-3-540-73510-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Laplacian Eigenvectors of Graphs影响因子(影响力)




书目名称Laplacian Eigenvectors of Graphs影响因子(影响力)学科排名




书目名称Laplacian Eigenvectors of Graphs网络公开度




书目名称Laplacian Eigenvectors of Graphs网络公开度学科排名




书目名称Laplacian Eigenvectors of Graphs被引频次




书目名称Laplacian Eigenvectors of Graphs被引频次学科排名




书目名称Laplacian Eigenvectors of Graphs年度引用




书目名称Laplacian Eigenvectors of Graphs年度引用学科排名




书目名称Laplacian Eigenvectors of Graphs读者反馈




书目名称Laplacian Eigenvectors of Graphs读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:21:16 | 显示全部楼层
发表于 2025-3-22 00:48:58 | 显示全部楼层
发表于 2025-3-22 06:38:20 | 显示全部楼层
Nodal Domain Theorems for Special Graph Classes,not be improved without further restrictions. On the other hand, we have seen that there exist graphs where this bound is not sharp. In general it is unknown, whether this upper bound is sharp for an arbitrary graph. The situation is similar for the (trivial) lower bound in Thm. 3.33. Furthermore, n
发表于 2025-3-22 10:19:30 | 显示全部楼层
发表于 2025-3-22 15:08:28 | 显示全部楼层
发表于 2025-3-22 20:39:37 | 显示全部楼层
发表于 2025-3-23 00:44:51 | 显示全部楼层
978-3-540-73509-0Springer-Verlag Berlin Heidelberg 2007
发表于 2025-3-23 03:55:03 | 显示全部楼层
发表于 2025-3-23 08:12:02 | 显示全部楼层
https://doi.org/10.1007/978-3-540-73510-6Eigenvector; Graph; Perron-Frobenius Theorem; algorithms; discrete Dirichlet problem; graph Laplacian; nod
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 15:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表