找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs; Jane K. Cullum,Ralph A. Willoughby Book 1985 Springer Sci

[复制链接]
楼主: arouse
发表于 2025-3-26 23:34:58 | 显示全部楼层
发表于 2025-3-27 03:19:40 | 显示全部楼层
Factored Inverses of Real Symmetric Matrices,applying a single-vector Lanczos procedure to the inverse of an associated matrix B ≡ PCP., where C = S0*A + SHIFT*I. The scalars S0 and SHIFT are specified by the user, selected in such a way that the resulting matrix C (or B) has a reasonable numerical condition. The permutation matrix P is chosen
发表于 2025-3-27 08:05:08 | 显示全部楼层
发表于 2025-3-27 10:47:38 | 显示全部楼层
Real Rectangular Matrices, rectangular matrices, using a single-vector Lanczos procedure. For a given real rectangular ℓ × n matrix A, these codes compute nonnegative scalars . and corresponding real vectors x ≠ 0 and y ≠ 0 such that . Every real rectangular ℓxn matrix, where ℓ . n, has a singular value decomposition, . wher
发表于 2025-3-27 17:08:53 | 显示全部楼层
Nondefective Complex Symmetric Matrices, using a single-vector Lanczos procedure. For a given nondefective, complex symmetric matrix A, these codes compute complex scalars À and corresponding complex vectors x ≠ 0 such that . . A complex nxn matrix A ≡ (a.), 1 ≤ i,j ≤ n, is complex symmetric if and only if for every i and j, a. = a.. A co
发表于 2025-3-27 18:43:43 | 显示全部楼层
发表于 2025-3-27 22:58:04 | 显示全部楼层
978-1-4684-9180-7Springer Science+Business Media New York 1985
发表于 2025-3-28 03:16:53 | 显示全部楼层
Overview: 978-1-4684-9180-7978-1-4684-9178-4
发表于 2025-3-28 10:04:06 | 显示全部楼层
https://doi.org/10.1007/978-1-4684-9178-4Eigenvalue; Factor; Fortran; Matrix; Processing; algorithms; code; computation; documentation; eigenvector; ma
发表于 2025-3-28 11:31:37 | 显示全部楼层
Real Symmetric Matrices,ing a single-vector Lanczos procedure. For a given real symmetric matrix A, these codes compute real scalars λ and corresponding real vectors x ≠ 0, such that . DEFINITION 2.1.1 A real nxn matrix A = (a.), 1 ≤ i,j ≤ n, is a real symmetric matrix if and only if for every i and j, a. = a..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 07:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表