找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowledge Science, Engineering and Management; 13th International C Gang Li,Heng Tao Shen,Xiang Zhao Conference proceedings 2020 Springer N

[复制链接]
楼主: 万能
发表于 2025-3-23 11:13:52 | 显示全部楼层
Robust Sequence Embedding for Recommendationti-classification task with the historical sequence as the input, and the next item as the output class label. Sequence representation learning in the multi-classification task is of our main concern. The item frequency usually follows the long tail distribution in recommendation systems, which will
发表于 2025-3-23 16:17:24 | 显示全部楼层
Deep Generative Recommendation with Maximizing Reciprocal Rankative model is that it can break through the limited modeling capabilities of linear models which dominate collaborative filtering research to a large extend. In this paper, we propose a deep generative recommendation model by enforcing a list-wise ranking strategy to VAE with the aid of multinomial
发表于 2025-3-23 18:08:21 | 显示全部楼层
发表于 2025-3-24 01:31:46 | 显示全部楼层
发表于 2025-3-24 06:11:32 | 显示全部楼层
Seeds Selection for Influence Maximization Based on Device-to-Device Social Knowledge by Reinforcemege D2D social knowledge to select influential users (seed users or seeds) for influence maximization to minimize network traffic. Lots of work has been done for seeds selection in a single community. However, few studies are about seeds selection in multiple communities. In this paper, we build a Mu
发表于 2025-3-24 09:38:25 | 显示全部楼层
CIFEF: Combining Implicit and Explicit Features for Friendship Inference in Location-Based Social Nemost active problems in LBSNs is friendship inference based on their rich check-in data. Previous studies are mainly based on co-occurrences of two users, however, a large number of user pairs have no co-occurrence, which weakens the performance of previous proposed methods. In this paper, we propos
发表于 2025-3-24 14:35:10 | 显示全部楼层
r Neuzeit zu eigenständigen Teildisziplinen entwickelt haben: Analysis, Wahrscheinlichkeitstheorie, angewandte Mathematik, Topologie und Mengenlehre. Die Darstellung verzichtet auf Vollständigkeit und konzentriert sich stattdessen ganz bewusst auf wesentliche oder besonders interessante Aspekte: Ein
发表于 2025-3-24 17:27:14 | 显示全部楼层
发表于 2025-3-24 21:22:22 | 显示全部楼层
发表于 2025-3-24 23:13:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 15:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表