找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[复制链接]
楼主: 两边在扩散
发表于 2025-3-23 11:53:45 | 显示全部楼层
A Sparse Matrix Optimization Method for Graph Neural Networks Traininguperior feature representation capabilities for graph data with non-Euclidean structures. These capabilities are enabled efficiently by sparse matrix-matrix multiplication (SPMM) and sparse matrix-vector multiplication (SPMV) that operate on sparse matrix representations of graph structures. However
发表于 2025-3-23 16:21:20 | 显示全部楼层
Dual-Dimensional Refinement of Knowledge Graph Embedding Representation within and between triples. However, existing methods primarily focus on a single dimension of entities or relations, limiting their ability to learn knowledge facts. To address this issue, this paper proposes a dual-dimension refined representation model. At the entity level, we perform residual s
发表于 2025-3-23 20:30:03 | 显示全部楼层
发表于 2025-3-23 23:42:59 | 显示全部楼层
Dynamic and Static Feature-Aware Microservices Decomposition via Graph Neural Networkstem into microservices can increase code reusability and reduce reconstruction costs. However, existing microservices decomposition approaches only utilize dynamic or static feature to represent the monolithic system, leading to low coverage of classes and inadequate information. To address these is
发表于 2025-3-24 05:50:40 | 显示全部楼层
发表于 2025-3-24 07:35:23 | 显示全部楼层
Low Redundancy Learning for Unsupervised Multi-view Feature Selections on the correlation between features and data category structure, while ignoring the redundancy between features. In this paper, we propose a multi-view feature selection method based on low redundancy learning, which introduces and automatically assigns the weight of feature redundancy in each vie
发表于 2025-3-24 12:39:02 | 显示全部楼层
Dynamic Feed-Forward LSTMo this end, we propose the Dynamic Feed-Forward LSTM (D-LSTM). Specifically, our D-LSTM first expands the capabilities of hidden states by assigning an exclusive state vector to each word. Then, the Dynamic Additive Attention (DAA) method is utilized to adaptively compress local context words into a
发表于 2025-3-24 16:02:44 | 显示全部楼层
Black-Box Adversarial Attack on Graph Neural Networks Based on Node Domain Knowledgepplication of GNNs in various graph tasks, it is particularly important to study the principles and implementation of graph adversarial attacks for understanding the robustness of GNNs. Previous studies have attempted to reduce the prediction accuracy of GNNs by adding small perturbations to the gra
发表于 2025-3-24 22:25:15 | 显示全部楼层
Tian Wang,Zhiguang Wang,Rongliang Wang,Dawei Li,Qiang Luwärtsspirale. Zunächst zur Abwärtsspirale: Stadterneuerung und Regionalentwicklung sind normalerweise eigendynamische Prozesse, bei denen sich Quartiere auf neue Gegebenheiten durch den Druck des Marktes ausrichten und eine Modernisierung ohne künstliche Steuerung oder finanzielle Anreize stattfinde
发表于 2025-3-25 02:13:32 | 显示全部楼层
Long Chen,Mingjian Guang,Junli Wang,Chungang Yanwärtsspirale. Zunächst zur Abwärtsspirale: Stadterneuerung und Regionalentwicklung sind normalerweise eigendynamische Prozesse, bei denen sich Quartiere auf neue Gegebenheiten durch den Druck des Marktes ausrichten und eine Modernisierung ohne künstliche Steuerung oder finanzielle Anreize stattfinde
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 15:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表