找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowledge Discovery from Sensor Data; Second International Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R. Conference proceedings 2010 S

[复制链接]
查看: 32374|回复: 45
发表于 2025-3-21 19:14:53 | 显示全部楼层 |阅读模式
书目名称Knowledge Discovery from Sensor Data
副标题Second International
编辑Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R.
视频video
概述Fast-track conference proceedings.State-of-the-art research.Unique visibility
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Knowledge Discovery from Sensor Data; Second International Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R. Conference proceedings 2010 S
出版日期Conference proceedings 2010
关键词data mining; disaster management; knowledge discovery; online; remote sensors; sensor mining; sensor netwo
版次1
doihttps://doi.org/10.1007/978-3-642-12519-5
isbn_softcover978-3-642-12518-8
isbn_ebook978-3-642-12519-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Knowledge Discovery from Sensor Data影响因子(影响力)




书目名称Knowledge Discovery from Sensor Data影响因子(影响力)学科排名




书目名称Knowledge Discovery from Sensor Data网络公开度




书目名称Knowledge Discovery from Sensor Data网络公开度学科排名




书目名称Knowledge Discovery from Sensor Data被引频次




书目名称Knowledge Discovery from Sensor Data被引频次学科排名




书目名称Knowledge Discovery from Sensor Data年度引用




书目名称Knowledge Discovery from Sensor Data年度引用学科排名




书目名称Knowledge Discovery from Sensor Data读者反馈




书目名称Knowledge Discovery from Sensor Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:39:40 | 显示全部楼层
Spatiotemporal Neighborhood Discovery for Sensor Data, discretize temporal intervals. These methods were tested on real life datasets including (a) sea surface temperature data from the Tropical Atmospheric Ocean Project (TAO) array in the Equatorial Pacific Ocean and (b)highway sensor network data archive. We have found encouraging results which are validated by real life phenomenon.
发表于 2025-3-22 00:34:36 | 显示全部楼层
Unsupervised Plan Detection with Factor Graphs,levant locations. Instead, we introduce 2 unsupervised methods to simultaneously estimate model parameters and hidden values within a Factor graph representing agent transitions over time. We evaluate our approach by applying it to goal prediction in a GPS dataset tracking 1074 ships over 5 days in the English channel.
发表于 2025-3-22 04:53:27 | 显示全部楼层
Probabilistic Analysis of a Large-Scale Urban Traffic Sensor Data Set,n or simple thresholding techniques to identify these anomalies. We describe the application of probabilistic modeling and unsupervised learning techniques to this data set and illustrate how these approaches can successfully detect underlying systematic patterns even in the presence of substantial noise and missing data.
发表于 2025-3-22 09:12:28 | 显示全部楼层
发表于 2025-3-22 13:05:32 | 显示全部楼层
Data Mining for Diagnostic Debugging in Sensor Networks: Preliminary Evidence and Lessons Learned,osis in the face of non-reproducible behavior, high interactive complexity, and resource constraints. Several examples are given to finding bugs in real sensor network code using the tools developed, demonstrating the efficacy of the approach.
发表于 2025-3-22 17:27:05 | 显示全部楼层
An Adaptive Sensor Mining Framework for Pervasive Computing Applications,nt in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.
发表于 2025-3-23 00:21:18 | 显示全部楼层
发表于 2025-3-23 02:16:11 | 显示全部楼层
发表于 2025-3-23 08:06:44 | 显示全部楼层
Pari Delir Haghighi,Brett Gillick,Shonali Krishnaswamy,Mohamed Medhat Gaber,Arkady Zaslavsky
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 06:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表