找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowledge Discovery from Multi-Sourced Data; Chen Ye,Hongzhi Wang,Guojun Dai Book 2022 The Author(s), under exclusive license to Springer

[复制链接]
查看: 47753|回复: 36
发表于 2025-3-21 18:42:38 | 显示全部楼层 |阅读模式
书目名称Knowledge Discovery from Multi-Sourced Data
编辑Chen Ye,Hongzhi Wang,Guojun Dai
视频video
概述Provides various techniques to discover useful knowledge based on different data models of multi-sourced data.Covers both truth discovery and fact discovery based on different data quality properties
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Knowledge Discovery from Multi-Sourced Data;  Chen Ye,Hongzhi Wang,Guojun Dai Book 2022 The Author(s), under exclusive license to Springer
描述This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.. .Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to “label” or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.. .At present, the knowledge discovery research for multi-sourced data mainly faces two
出版日期Book 2022
关键词Truth Discovery; Source Reliability; Integrity Constraints; Optimization Framework; Fact Extraction; Data
版次1
doihttps://doi.org/10.1007/978-981-19-1879-7
isbn_softcover978-981-19-1878-0
isbn_ebook978-981-19-1879-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
The information of publication is updating

书目名称Knowledge Discovery from Multi-Sourced Data影响因子(影响力)




书目名称Knowledge Discovery from Multi-Sourced Data影响因子(影响力)学科排名




书目名称Knowledge Discovery from Multi-Sourced Data网络公开度




书目名称Knowledge Discovery from Multi-Sourced Data网络公开度学科排名




书目名称Knowledge Discovery from Multi-Sourced Data被引频次




书目名称Knowledge Discovery from Multi-Sourced Data被引频次学科排名




书目名称Knowledge Discovery from Multi-Sourced Data年度引用




书目名称Knowledge Discovery from Multi-Sourced Data年度引用学科排名




书目名称Knowledge Discovery from Multi-Sourced Data读者反馈




书目名称Knowledge Discovery from Multi-Sourced Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:20:30 | 显示全部楼层
发表于 2025-3-22 03:43:06 | 显示全部楼层
https://doi.org/10.1007/978-981-19-1879-7Truth Discovery; Source Reliability; Integrity Constraints; Optimization Framework; Fact Extraction; Data
发表于 2025-3-22 06:35:45 | 显示全部楼层
发表于 2025-3-22 12:27:11 | 显示全部楼层
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/k/image/543865.jpg
发表于 2025-3-22 14:16:07 | 显示全部楼层
Introduction,ckground of knowledge discovery from multi-source data. In Sect. ., we analyze the multi-source data quality to motivate the necessity of discovering useful information from noisy sources. In Sect. ., we summarize the existing studies and explore the drawbacks. We conclude the chapter with an overvi
发表于 2025-3-22 20:03:19 | 显示全部楼层
发表于 2025-3-22 23:24:46 | 显示全部楼层
发表于 2025-3-23 03:31:32 | 显示全部楼层
Book 2022o expect humans to “label” or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.. .At present, the knowledge discovery research for multi-sourced data mainly faces two
发表于 2025-3-23 09:12:15 | 显示全部楼层
2191-5768 to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.. .At present, the knowledge discovery research for multi-sourced data mainly faces two978-981-19-1878-0978-981-19-1879-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 10:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表