找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill

[复制链接]
查看: 10295|回复: 55
发表于 2025-3-21 18:37:53 | 显示全部楼层 |阅读模式
书目名称Knowing without Thinking
副标题Mind, Action, Cognit
编辑Zdravko Radman (Professor of Philosophy)
视频videohttp://file.papertrans.cn/544/543819/543819.mp4
丛书名称New Directions in Philosophy and Cognitive Science
图书封面Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill
描述A volume devoted explicitly to the subtle and multidimensional phenomenon of background knowing that has to be recognized as an important element of the triad mind-body-world. The essays are inspired by seminal works on the topic by Searle and Dreyfus, but also make significant contribution in bringing the discussion beyond the classical confines.
出版日期Book 2012
关键词body; Chinese; cognition; concept; corpus; dynamics; essay; experience; intention; John Rogers Searle; knowled
版次1
doihttps://doi.org/10.1057/9780230368064
isbn_softcover978-1-349-33025-6
isbn_ebook978-0-230-36806-4Series ISSN 2946-2959 Series E-ISSN 2946-2967
issn_series 2946-2959
copyrightPalgrave Macmillan, a division of Macmillan Publishers Limited 2012
The information of publication is updating

书目名称Knowing without Thinking影响因子(影响力)




书目名称Knowing without Thinking影响因子(影响力)学科排名




书目名称Knowing without Thinking网络公开度




书目名称Knowing without Thinking网络公开度学科排名




书目名称Knowing without Thinking被引频次




书目名称Knowing without Thinking被引频次学科排名




书目名称Knowing without Thinking年度引用




书目名称Knowing without Thinking年度引用学科排名




书目名称Knowing without Thinking读者反馈




书目名称Knowing without Thinking读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:05:40 | 显示全部楼层
Hubert L. Dreyfus.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P
发表于 2025-3-22 04:06:20 | 显示全部楼层
发表于 2025-3-22 06:56:20 | 显示全部楼层
Massimiliano Cappuccio,Michael Wheeler.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P
发表于 2025-3-22 08:50:17 | 显示全部楼层
Daniel D. Hutto.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P
发表于 2025-3-22 16:41:19 | 显示全部楼层
Michael Schmitz.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P
发表于 2025-3-22 18:34:36 | 显示全部楼层
发表于 2025-3-22 23:50:02 | 显示全部楼层
发表于 2025-3-23 05:08:04 | 显示全部楼层
Daniel A. Schmickingom geometric graph in which vertices correspond to points generated randomly and independently from a non-isotropic .-dimensional Gaussian distribution, and two vertices are connected if the distance between them is smaller than some pre-specified threshold. We derive new notions of dimensionality w
发表于 2025-3-23 07:40:49 | 显示全部楼层
tric analysis.Written from an interdisciplinary perspective,Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measur
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-10-8 14:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表