找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Köthe-Bochner Function Spaces; Pei-Kee Lin Book 2004 Springer Science+Business Media New York 2004 Banach Space.Convexity.Martingale.Opera

[复制链接]
查看: 50358|回复: 36
发表于 2025-3-21 16:53:10 | 显示全部楼层 |阅读模式
书目名称Köthe-Bochner Function Spaces
编辑Pei-Kee Lin
视频videohttp://file.papertrans.cn/542/541570/541570.mp4
概述Contains recent results of the geometric properties in the K(oe)the-Bochner spaces.Each section is independent of each other, allowing the different levels of readership
图书封面Titlebook: Köthe-Bochner Function Spaces;  Pei-Kee Lin Book 2004 Springer Science+Business Media New York 2004 Banach Space.Convexity.Martingale.Opera
描述This monograph isdevoted to a special area ofBanach space theory-the Kothe­ Bochner function space. Two typical questions in this area are: Question 1. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Question 2. Let 1~ p~ 00, E a Kothe function space, and X a Banach space. Does either E or X contain an lp-sequence ifthe Kothe-Bochner function space E(X) has an lp-sequence? To solve the above two questions will not only give us a better understanding of the structure of the Kothe-Bochner function spaces but it will also develop some useful techniques that can be applied to other fields, such as harmonic analysis, probability theory, and operator theory. Let us outline the contents of the book. In the first two chapters we provide some some basic results forthose students who do not have any background in Banach space theory. We present proofs of Rosenthal‘s l1-theorem, James‘s theorem (when X is separable), Kolmos‘s theorem, N. Randriananto
出版日期Book 2004
关键词Banach Space; Convexity; Martingale; Operator theory; Smooth function; continuous function; functional ana
版次1
doihttps://doi.org/10.1007/978-0-8176-8188-3
isbn_softcover978-1-4612-6482-8
isbn_ebook978-0-8176-8188-3
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

书目名称Köthe-Bochner Function Spaces影响因子(影响力)




书目名称Köthe-Bochner Function Spaces影响因子(影响力)学科排名




书目名称Köthe-Bochner Function Spaces网络公开度




书目名称Köthe-Bochner Function Spaces网络公开度学科排名




书目名称Köthe-Bochner Function Spaces被引频次




书目名称Köthe-Bochner Function Spaces被引频次学科排名




书目名称Köthe-Bochner Function Spaces年度引用




书目名称Köthe-Bochner Function Spaces年度引用学科排名




书目名称Köthe-Bochner Function Spaces读者反馈




书目名称Köthe-Bochner Function Spaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:32:08 | 显示全部楼层
Book 2004. Let E be a Kothe function space and X a Banach space. Does the Kothe-Bochner function space E(X) have the Dunford-Pettis property if both E and X have the same property? If the answer is negative, can we find some extra conditions on E and (or) X such that E(X) has the Dunford-Pettis property? Que
发表于 2025-3-22 04:20:47 | 显示全部楼层
发表于 2025-3-22 04:58:46 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-8188-3Banach Space; Convexity; Martingale; Operator theory; Smooth function; continuous function; functional ana
发表于 2025-3-22 11:09:45 | 显示全部楼层
发表于 2025-3-22 13:24:04 | 显示全部楼层
发表于 2025-3-22 18:09:39 | 显示全部楼层
978-1-4612-6482-8Springer Science+Business Media New York 2004
发表于 2025-3-22 23:50:54 | 显示全部楼层
发表于 2025-3-23 02:10:03 | 显示全部楼层
发表于 2025-3-23 09:37:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-7 12:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表