找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Kähler Immersions of Kähler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[复制链接]
查看: 34643|回复: 38
发表于 2025-3-21 18:04:56 | 显示全部楼层 |阅读模式
书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms
编辑Andrea Loi,Michela Zedda
视频videohttp://file.papertrans.cn/542/541469/541469.mp4
概述Winner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and Kähler geometry.Exercises at the end of
丛书名称Lecture Notes of the Unione Matematica Italiana
图书封面Titlebook: Kähler Immersions of Kähler Manifolds into Complex Space Forms;  Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com
描述.The aim of this book is to describe Calabi‘s original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.  ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. .Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader‘s understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry... .
出版日期Book 2018
关键词Complex space forms; Homogeneous metrics; Kähler metrics; Kähler immersions; Kähler-Einstein metrics
版次1
doihttps://doi.org/10.1007/978-3-319-99483-3
isbn_softcover978-3-319-99482-6
isbn_ebook978-3-319-99483-3Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms影响因子(影响力)




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms影响因子(影响力)学科排名




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms网络公开度




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms网络公开度学科排名




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms被引频次




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms被引频次学科排名




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms年度引用




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms年度引用学科排名




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms读者反馈




书目名称Kähler Immersions of Kähler Manifolds into Complex Space Forms读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:05:32 | 显示全部楼层
发表于 2025-3-22 00:23:57 | 显示全部楼层
Andrea Loi,Michela Zeddaand a detailed bibliography make it easy to go beyond the presented material if desired..From the reviews of the first edition:. “…readers are likely to regard the book as an ideal reference. Indeed the monogra978-3-030-61873-5978-3-030-61871-1Series ISSN 2199-3130 Series E-ISSN 2199-3149
发表于 2025-3-22 08:03:18 | 显示全部楼层
发表于 2025-3-22 11:34:50 | 显示全部楼层
发表于 2025-3-22 15:31:48 | 显示全部楼层
,Homogeneous Kähler Manifolds,eorem 3.2), will be applied in Sect. 3.2 to classify homogeneous Kähler manifolds admitting a Kähler immersion into . or ., . ≤. (Theorem 3.3).In the last three sections we consider Kähler immersions of homogeneous Kähler manifolds into ., . ≤.. The general case is discussed in Sect. 3.3, while in S
发表于 2025-3-22 19:49:28 | 显示全部楼层
,Kähler–Einstein Manifolds,s into complex space forms. We begin describing in the next section the work of Umehara (Tohoku Math J 39:385–389, 1987) which completely classifies Kähler–Einstein manifolds admitting a Kähler immersion into the finite dimensional complex hyperbolic or flat space. In Sect. 4.3 we summarize what is
发表于 2025-3-22 22:39:50 | 显示全部楼层
发表于 2025-3-23 02:10:28 | 显示全部楼层
发表于 2025-3-23 05:43:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 03:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表