找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Kähler Immersions of Kähler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[复制链接]
楼主: CLOG
发表于 2025-3-26 22:53:04 | 显示全部楼层
Hartogs Type Domains,mmetric but just a bounded homogeneous domain.Finally, in Sect. 5.3 we discuss the existence of a Kähler immersion for a large class of Hartogs domains whose Kähler potentials are given locally by . for suitable function . (see Proposition 5.2).
发表于 2025-3-27 05:10:27 | 显示全部楼层
发表于 2025-3-27 06:11:02 | 显示全部楼层
,Calabi’s Criterion,mplex space formsrespectively. In Sect. 2.3 we discuss the existence of a Kähler immersion of a complex space forminto another, which Calabi himself in (Ann Math 58:1–23, 1953) completely classified as direct application of his criterion.
发表于 2025-3-27 11:00:15 | 显示全部楼层
Book 2018ccount of what is known today on the subject and to point out some open problems.  ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a fini
发表于 2025-3-27 14:06:59 | 显示全部楼层
1862-9113 ledge of complex and Kähler geometry.Exercises at the end of.The aim of this book is to describe Calabi‘s original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.  ..Calab
发表于 2025-3-27 20:37:08 | 显示全部楼层
Andrea Loi,Michela ZeddaWinner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and Kähler geometry.Exercises at the end of
发表于 2025-3-28 00:56:04 | 显示全部楼层
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/k/image/541469.jpg
发表于 2025-3-28 05:37:47 | 显示全部楼层
发表于 2025-3-28 08:17:00 | 显示全部楼层
978-3-319-99482-6Springer Nature Switzerland AG 2018
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 03:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表