找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Stochastic Integration; K. L. Chung,R. J. Williams Textbook 1990Latest edition Springer Science+Business Media New York 19

[复制链接]
查看: 26423|回复: 46
发表于 2025-3-21 16:32:47 | 显示全部楼层 |阅读模式
书目名称Introduction to Stochastic Integration
编辑K. L. Chung,R. J. Williams
视频videohttp://file.papertrans.cn/475/474229/474229.mp4
概述Affordable, softcover reprint of a classic textbook.Authors‘ exposition consistently chooses clarity over brevity.Includes an expanded collection of exercises from the first edition
丛书名称Probability and Its Applications
图书封面Titlebook: Introduction to Stochastic Integration;  K. L. Chung,R. J. Williams Textbook 1990Latest edition Springer Science+Business Media New York 19
描述This is a substantial expansion of the first edition. The last chapter on stochastic differential equations is entirely new, as is the longish section §9.4 on the Cameron-Martin-Girsanov formula. Illustrative examples in Chapter 10 include the warhorses attached to the names of L. S. Ornstein, Uhlenbeck and Bessel, but also a novelty named after Black and Scholes. The Feynman-Kac-Schrooinger development (§6.4) and the material on re­ flected Brownian motions (§8.5) have been updated. Needless to say, there are scattered over the text minor improvements and corrections to the first edition. A Russian translation of the latter, without changes, appeared in 1987. Stochastic integration has grown in both theoretical and applicable importance in the last decade, to the extent that this new tool is now sometimes employed without heed to its rigorous requirements. This is no more surprising than the way mathematical analysis was used historically. We hope this modest introduction to the theory and application of this new field may serve as a text at the beginning graduate level, much as certain standard texts in analysis do for the deterministic counterpart. No monograph is worthy of the
出版日期Textbook 1990Latest edition
关键词Brownian motion; Martingale; Probability theory; Stochastic calculus; clsmbc; local martingale; local time
版次2
doihttps://doi.org/10.1007/978-1-4612-4480-6
isbn_softcover978-1-4612-8837-4
isbn_ebook978-1-4612-4480-6Series ISSN 2297-0371 Series E-ISSN 2297-0398
issn_series 2297-0371
copyrightSpringer Science+Business Media New York 1990
The information of publication is updating

书目名称Introduction to Stochastic Integration影响因子(影响力)




书目名称Introduction to Stochastic Integration影响因子(影响力)学科排名




书目名称Introduction to Stochastic Integration网络公开度




书目名称Introduction to Stochastic Integration网络公开度学科排名




书目名称Introduction to Stochastic Integration被引频次




书目名称Introduction to Stochastic Integration被引频次学科排名




书目名称Introduction to Stochastic Integration年度引用




书目名称Introduction to Stochastic Integration年度引用学科排名




书目名称Introduction to Stochastic Integration读者反馈




书目名称Introduction to Stochastic Integration读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:58:01 | 显示全部楼层
Generalized Ito Formula, Change of Time and Measure, formula for transforming a local martingale into a local martingale plus a state-dependent drift. We illustrate how this can be applied to obtain weak solutions of some stochastic differential equations.
发表于 2025-3-22 00:45:46 | 显示全部楼层
发表于 2025-3-22 05:59:56 | 显示全部楼层
Definition of the Stochastic Integral,n . and ., the integral can be defined path-by-path. For instance, if . is a right continuous local ..-martingale whose paths are locally of bounded variation, and . is a continuous adapted process, then.is well-defined as a Riemann-Stieltjes integral for each . and ω, namely by the limit as n → ∞ of
发表于 2025-3-22 11:52:45 | 显示全部楼层
发表于 2025-3-22 13:52:51 | 显示全部楼层
发表于 2025-3-22 19:12:08 | 显示全部楼层
发表于 2025-3-22 22:42:34 | 显示全部楼层
发表于 2025-3-23 03:16:13 | 显示全部楼层
发表于 2025-3-23 08:05:33 | 显示全部楼层
K. L. Chung,R. J. Williamsdance for corporate planning regarding exploration and financial investments, as well as for venture capitalist and international funding bodies. As such, it provides an indispensable point of reference for fut978-3-662-47493-8
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 15:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表