找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Stochastic Analysis and Malliavin Calculus; Giuseppe Prato Textbook 2014 Scuola Normale Superiore 2014 Brownian motion.Fey

[复制链接]
查看: 13552|回复: 51
发表于 2025-3-21 18:36:37 | 显示全部楼层 |阅读模式
书目名称Introduction to Stochastic Analysis and Malliavin Calculus
编辑Giuseppe Prato
视频video
概述Based on several years teaching experience.Revised edition of two previous publications.Includes several applications
丛书名称Publications of the Scuola Normale Superiore
图书封面Titlebook: Introduction to Stochastic Analysis and Malliavin Calculus;  Giuseppe Prato Textbook 2014 Scuola Normale Superiore 2014 Brownian motion.Fey
描述This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô‘s formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.
出版日期Textbook 2014
关键词Brownian motion; Feynman-Kac semigroup; Gaussian measure; Malliavin calculus
版次1
doihttps://doi.org/10.1007/978-88-7642-499-1
isbn_softcover978-88-7642-497-7
isbn_ebook978-88-7642-499-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightScuola Normale Superiore 2014
The information of publication is updating

书目名称Introduction to Stochastic Analysis and Malliavin Calculus影响因子(影响力)




书目名称Introduction to Stochastic Analysis and Malliavin Calculus影响因子(影响力)学科排名




书目名称Introduction to Stochastic Analysis and Malliavin Calculus网络公开度




书目名称Introduction to Stochastic Analysis and Malliavin Calculus网络公开度学科排名




书目名称Introduction to Stochastic Analysis and Malliavin Calculus被引频次




书目名称Introduction to Stochastic Analysis and Malliavin Calculus被引频次学科排名




书目名称Introduction to Stochastic Analysis and Malliavin Calculus年度引用




书目名称Introduction to Stochastic Analysis and Malliavin Calculus年度引用学科排名




书目名称Introduction to Stochastic Analysis and Malliavin Calculus读者反馈




书目名称Introduction to Stochastic Analysis and Malliavin Calculus读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:09:54 | 显示全部楼层
Gaussian random variables,This chapter is devoted to definitions and main properties of ..
发表于 2025-3-22 02:57:02 | 显示全部楼层
发表于 2025-3-22 06:24:34 | 显示全部楼层
发表于 2025-3-22 10:32:56 | 显示全部楼层
发表于 2025-3-22 16:12:34 | 显示全部楼层
,Formulae of Feynman—Kac and Girsanov,We are here concerned with the stochastic differential equation . under Hypotheses 8.1 and 8.18.
发表于 2025-3-22 18:23:28 | 显示全部楼层
Asymptotic behaviour of transition semigroups,For the sake of simplicity, we shall limit ourselves to stochastic differential equations with constant diffusion coefficients (additive noise) of the form . under the following assumptions
发表于 2025-3-22 22:19:33 | 显示全部楼层
https://doi.org/10.1007/978-88-7642-499-1Brownian motion; Feynman-Kac semigroup; Gaussian measure; Malliavin calculus
发表于 2025-3-23 04:30:13 | 显示全部楼层
发表于 2025-3-23 08:35:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 06:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表