找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Large Truncated Toeplitz Matrices; Albrecht Böttcher,Bernd Silbermann Book 1999 Springer Science+Business Media New York 1

[复制链接]
查看: 17818|回复: 36
发表于 2025-3-21 19:57:33 | 显示全部楼层 |阅读模式
书目名称Introduction to Large Truncated Toeplitz Matrices
编辑Albrecht Böttcher,Bernd Silbermann
视频video
丛书名称Universitext
图书封面Titlebook: Introduction to Large Truncated Toeplitz Matrices;  Albrecht Böttcher,Bernd Silbermann Book 1999 Springer Science+Business Media New York 1
描述Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behavoir of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis. The book includes classical topics as well as results obtained and methods developed only in the last few years. Though employing modern tools, the exposition is elementary and aims at pointing out the mathematical background behind some interesting phenomena one encounters when working with large Toeplitz matrices. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to
出版日期Book 1999
关键词Algebra; Banach algebra; Distribution; Eigenvalue; Matrix; Operator theory; Sage; functional analysis; linea
版次1
doihttps://doi.org/10.1007/978-1-4612-1426-7
isbn_softcover978-1-4612-7139-0
isbn_ebook978-1-4612-1426-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

书目名称Introduction to Large Truncated Toeplitz Matrices影响因子(影响力)




书目名称Introduction to Large Truncated Toeplitz Matrices影响因子(影响力)学科排名




书目名称Introduction to Large Truncated Toeplitz Matrices网络公开度




书目名称Introduction to Large Truncated Toeplitz Matrices网络公开度学科排名




书目名称Introduction to Large Truncated Toeplitz Matrices被引频次




书目名称Introduction to Large Truncated Toeplitz Matrices被引频次学科排名




书目名称Introduction to Large Truncated Toeplitz Matrices年度引用




书目名称Introduction to Large Truncated Toeplitz Matrices年度引用学科排名




书目名称Introduction to Large Truncated Toeplitz Matrices读者反馈




书目名称Introduction to Large Truncated Toeplitz Matrices读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:05:14 | 显示全部楼层
发表于 2025-3-22 04:08:38 | 显示全部楼层
发表于 2025-3-22 06:18:37 | 显示全部楼层
发表于 2025-3-22 10:43:20 | 显示全部楼层
Infinite Matrices,The purpose of this section is to fix some standard notations and to recall some terminology.
发表于 2025-3-22 14:55:53 | 显示全部楼层
Finite Section Method and Stability,Let.be an infinite matrix and suppose A generates a bounded operator on l.. In order to solve the equation . y, i.e., the infinite linear system.we consider the truncated systems
发表于 2025-3-22 19:49:03 | 显示全部楼层
发表于 2025-3-22 23:29:15 | 显示全部楼层
Moore-Penrose Inverses and Singular Values,Let . be a Hilbert space and let . be a bounded linear operator on . Then sp .*. ⊂[0,∞),and the non-negative square roots of the numbers in sp .*. are called the . of .. The set of the singular values of . will be denoted byΣ(.),
发表于 2025-3-23 02:33:55 | 显示全部楼层
发表于 2025-3-23 06:07:17 | 显示全部楼层
Block Toeplitz Matrices,A Toeplitz matrix is constant along the parallels to the main diagonal. Matrices whose entries in the parallels to the main diagonal form periodic sequences (with the same period . are referred to as . Equivalently, A is a block Toeplitz matrix if and only if.where . is a sequence of . matrices,.for all . ∈ Z.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 06:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表