找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Graph Neural Networks; Zhiyuan Liu,Jie Zhou Book 2020 Springer Nature Switzerland AG 2020

[复制链接]
楼主: 皱纹
发表于 2025-3-28 15:48:26 | 显示全部楼层
Zhiyuan Liu,Jie Zhou.Principia...The chapters presented here collectively demonstrate that her work was an essential contribution to  the mediation between empiricist and rationalist positions in the history of science..978-94-007-3693-1978-94-007-2093-0Series ISSN 0066-6610 Series E-ISSN 2215-0307
发表于 2025-3-28 18:46:00 | 显示全部楼层
Zhiyuan Liu,Jie Zhou.Principia...The chapters presented here collectively demonstrate that her work was an essential contribution to  the mediation between empiricist and rationalist positions in the history of science..978-94-007-3693-1978-94-007-2093-0Series ISSN 0066-6610 Series E-ISSN 2215-0307
发表于 2025-3-29 01:59:59 | 显示全部楼层
发表于 2025-3-29 06:42:54 | 显示全部楼层
发表于 2025-3-29 07:29:51 | 显示全部楼层
发表于 2025-3-29 14:48:30 | 显示全部楼层
发表于 2025-3-29 19:22:38 | 显示全部楼层
General Frameworks,6, Watters et al., 2017], Neural Physics Engine [Chang et al., 2017], CommNet [Sukhbaatar et al., 2016], structure2vec [Dai et al., 2016, Khalil et al., 2017], GGNN [Li et al., 2016], Relation Network [Raposo et al., 2017, Santoro et al., 2017], Deep Sets [Zaheer et al., 2017], and Point Net [Qi et al., 2017a].
发表于 2025-3-29 23:27:28 | 显示全部楼层
发表于 2025-3-30 02:32:00 | 显示全部楼层
Basics of Neural Networks,s rather precisely. In the end, the knowledge that a neural network learned is stored in the connections in a digital manner. Most of the researches on neural network try to change the way it learns (with different algorithms or different structures), aiming to improve the generalization ability of the model.
发表于 2025-3-30 06:25:53 | 显示全部楼层
Applications - Structural Scenarios,discussing how to model real-world physical systems with object-relationship graphs, how to predict chemical properties of molecules and biological interaction properties of proteins and the methods of reasoning about the out-of-knowledge-base (OOKB) entities in knowledge graphs.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 23:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表