找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Analytic Number Theory; K. Chandrasekharan Book 1968 Springer-Verlag Berlin · Heidelberg 1968 Analytische Zahlentheorie.an

[复制链接]
查看: 38666|回复: 51
发表于 2025-3-21 19:02:51 | 显示全部楼层 |阅读模式
书目名称Introduction to Analytic Number Theory
编辑K. Chandrasekharan
视频video
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Introduction to Analytic Number Theory;  K. Chandrasekharan Book 1968 Springer-Verlag Berlin · Heidelberg 1968 Analytische Zahlentheorie.an
描述This book has grown out of a course of lectures I have given at the Eidgenossische Technische Hochschule, Zurich. Notes of those lectures, prepared for the most part by assistants, have appeared in German. This book follows the same general plan as those notes, though in style, and in text (for instance, Chapters III, V, VIII), and in attention to detail, it is rather different. Its purpose is to introduce the non-specialist to some of the fundamental results in the theory of numbers, to show how analytical methods of proof fit into the theory, and to prepare the ground for a subsequent inquiry into deeper questions. It is pub­ lished in this series because of the interest evinced by Professor Beno Eckmann. I have to acknowledge my indebtedness to Professor Carl Ludwig Siegel, who has read the book, both in manuscript and in print, and made a number of valuable criticisms and suggestions. Professor Raghavan Narasimhan has helped me, time and again, with illuminating comments. Dr. Harold Diamond has read the proofs, and helped me to remove obscurities. I have to thank them all. K.C.
出版日期Book 1968
关键词Analytische Zahlentheorie; analytic number theory; arithmetic; boundary element method; number theory; pr
版次1
doihttps://doi.org/10.1007/978-3-642-46124-8
isbn_softcover978-3-642-46126-2
isbn_ebook978-3-642-46124-8Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin · Heidelberg 1968
The information of publication is updating

书目名称Introduction to Analytic Number Theory影响因子(影响力)




书目名称Introduction to Analytic Number Theory影响因子(影响力)学科排名




书目名称Introduction to Analytic Number Theory网络公开度




书目名称Introduction to Analytic Number Theory网络公开度学科排名




书目名称Introduction to Analytic Number Theory被引频次




书目名称Introduction to Analytic Number Theory被引频次学科排名




书目名称Introduction to Analytic Number Theory年度引用




书目名称Introduction to Analytic Number Theory年度引用学科排名




书目名称Introduction to Analytic Number Theory读者反馈




书目名称Introduction to Analytic Number Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:31:48 | 显示全部楼层
发表于 2025-3-22 02:58:38 | 显示全部楼层
K. Chandrasekharanrei Hochschulen.Trotz der Vielfalt der behandelten Themen isDas Buch vermittelt das Grundwissen über elektrische Netzwerke klar und anschaulich. Trotz der Vielfalt der behandelten Themen ist der Stoff in kompakter, leicht verständlicher und dennoch exakter Form dargestellt. Die Autoren dieses Buches
发表于 2025-3-22 06:51:31 | 显示全部楼层
发表于 2025-3-22 09:32:56 | 显示全部楼层
发表于 2025-3-22 14:40:42 | 显示全部楼层
发表于 2025-3-22 17:22:32 | 显示全部楼层
K. Chandrasekharanrei Hochschulen.Trotz der Vielfalt der behandelten Themen isDas Buch vermittelt das Grundwissen über elektrische Netzwerke klar und anschaulich. Trotz der Vielfalt der behandelten Themen ist der Stoff in kompakter, leicht verständlicher und dennoch exakter Form dargestellt. Die Autoren dieses Buches
发表于 2025-3-23 01:13:39 | 显示全部楼层
,Weyl’s theorems on uniform distribution and Kronecker’s theorem,rom this follows Dirichlet’s theorem that corresponding to any given irrational number ., there exist infinitely many pairs of integers . and ., such that . differs from . by as little as we please. For given ., 0<.<1, we consider the integer 1 + [1/.]. Since there exist infinitely many rationals .,
发表于 2025-3-23 04:09:46 | 显示全部楼层
,Minkowski’s theorem on lattice points in convex sets,f dimension .,.≥1 we call a point in it a . if all it co-ordinates are integers. In this chapter we shall prove Minkowski’s theorem that a convex set in R., symmetric about the origin, whose volume is greater than 2., contains a lattice point other than the origin.
发表于 2025-3-23 05:39:26 | 显示全部楼层
,Dirichlet’s theorem on primes in an arithmetical progression, 3, where . = 1,2,3,…, contains infinitely many primes (Chapter III, § 3). We shall now prove Dirichlet’s theorem that there exist infinitely many primes in any arithmetical progression . + ., where . and . are integers, .> 0, (.,.) = 1, and . runs through all positive integers.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 20:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表