找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clin; Second International Kenji Suzuki,Mau

[复制链接]
楼主: 乌鸦
发表于 2025-3-28 15:21:12 | 显示全部楼层
Testing the Robustness of Attribution Methods for Convolutional Neural Networks in MRI-Based Alzheimh Alzheimer’s disease and healthy controls. Afterwards, we produced attribution maps for each subject in the test data and quantitatively compared them across models and attribution methods. We show that visual comparison is not sufficient and that some widely used attribution methods produce highly inconsistent outcomes.
发表于 2025-3-28 18:48:10 | 显示全部楼层
UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomicsensional spaces. To bridge the gap with radiomics-based models, we implement a regression concept vector showing the impact of radiomic features on the predictions of deep networks. In addition, we introduce a new metric with improved scaling to high-dimensional spaces, allowing comparison across multiple layers.
发表于 2025-3-29 02:15:10 | 显示全部楼层
发表于 2025-3-29 05:37:25 | 显示全部楼层
Deep Learning Based Multi-modal Registration for Retinal Imagingour approach using manual grading by expert readers. In the largest dataset (FA-to-SLO/OCT) containing 1130 pairs we achieve an average error rate of 13.12%. We compared our method with intensity based affine registration methods using original and vessel segmentation images.
发表于 2025-3-29 10:25:00 | 显示全部楼层
发表于 2025-3-29 13:06:58 | 显示全部楼层
Towards Automatic Diagnosis from Multi-modal Medical Datacal dataset, we show that combining features from images (e.g. x-rays) and texts (e.g. clinical reports), sharing information among different tasks (e.g. x-rays classification, autoencoder, and diagnosis generation) and across domains boost the performance of diagnosis generation (86.0% in terms of BLEU@4).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表