用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Interpolation Theory and Its Applications; L. A. Sakhnovich Book 1997 Kluwer Academic Publisher 1997 Finite.Identity.difference equation.e

[复制链接]
楼主: ISSUE
发表于 2025-3-23 11:33:50 | 显示全部楼层
Extremal Problems,of the extremal problems considered in this chapter is connected with the maximum jump theorem (A.Sakhnovich [50]). This case is provided with some problems of the canonical differential systems theory, several problems of radio techique and problem connected with the Gauss model (Vladimirov-Volovic
发表于 2025-3-23 16:16:55 | 显示全部楼层
发表于 2025-3-23 21:09:15 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/i/image/472684.jpg
发表于 2025-3-24 01:05:38 | 显示全部楼层
Interpolation Problems in the Unit Circle, the problems in the circle, as in this way we manage to get rid of certain conditions which we have in Chapter I. These conditions are connected with the possibility of a jump of the distribution function τ(.) at the singular point . = ∞.
发表于 2025-3-24 04:12:12 | 显示全部楼层
发表于 2025-3-24 10:35:14 | 显示全部楼层
https://doi.org/10.1007/978-94-009-0059-2Finite; Identity; difference equation; equation; extrema; fourier analysis; function; mathematics; measure; v
发表于 2025-3-24 13:00:21 | 显示全部楼层
978-94-010-6516-0Kluwer Academic Publisher 1997
发表于 2025-3-24 16:44:42 | 显示全部楼层
Degenerate Problems (Matrix Case),This chapter is deducated to the case when the matrix . satisfies the identity . - SA* = .(Φ. Φ. + Φ. Φ.) (5.0.1) and is degenerate, i.e det . = 0 (5.0.2).
发表于 2025-3-24 20:25:20 | 显示全部楼层
Concrete Interpolation Problems,In Chapters 1, 2 and 4 we constructed the general theory of interpolation problems based on the operator identities of the form . - SA* = .(Φ. Φ. + Φ. Φ.) (6.0.1) and . - . = Φ. Φ. + Φ. Φ.)(6.0.2).
发表于 2025-3-25 03:04:21 | 显示全部楼层
Spectral Problems For Canonical Systems Of Difference Equations,In this Chapter the following system of difference equations is considered . (., .) -. (. - 1, .) = . (.)W(. - 1, .) . > 0 (8.0.1) where . (., .), . (.) ≥ 0, . (.).(.) = 0 (8.0.2)
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 11:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表