找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Interpolating Cubic Splines; Gary D. Knott Book 2000 Springer Science+Business Media New York 2000 Approximation.Approximation theory.Spli

[复制链接]
楼主: hearken
发表于 2025-3-28 17:15:17 | 显示全部楼层
发表于 2025-3-28 19:35:21 | 显示全部楼层
,Λ-Spline Curves With Range Dimension ,nctions which map.to ., such that no two functions in Λ are identical on [. ., . .]. Given the real values . ≤ . ≤ … ≤ ., the parametric function .(.) defined on the interval [., .] is called a Λ- . ., .,…, . if .(.) = .(. − .−1) for . ≤ . ≤ . and 1 ≤ . ≤ . − 1, where each function . is a function i
发表于 2025-3-29 02:47:04 | 显示全部楼层
发表于 2025-3-29 05:33:42 | 显示全部楼层
发表于 2025-3-29 09:11:21 | 显示全部楼层
Smoothing Splines,rom the graph of some unknown function . : . → . such that . = .(.) + ∈. for . = 1,… , .. If the form of the function . were known, except for some unknown parameter values, we could then determine those values by the least squares method, where the desired parameter values are those parameter value
发表于 2025-3-29 12:46:31 | 显示全部楼层
Geometrically Continuous Cubic Splines,try and exit tangent vectors at each point ., where each pair may have differing magnitudes, but the same direction. It is common to call a tangent vector geometrically continuous curve a . curve, in the same way that a tangent vector algebraically continuous curve is commonly called a . curve. A .
发表于 2025-3-29 17:17:54 | 显示全部楼层
Cubic Spline Vector Space Basis Functions,φ. where α.,… , α. ∈ .. For the case of a vector space of cubic spline functions, some basis sets can be developed by focusing on a representation of the cubic polynomial spline segments as component-wise linear combinations of fixed functions.
发表于 2025-3-29 22:18:06 | 显示全部楼层
Rational Cubic Splines,c polynomial cannot represent other conic section curves such as a circular arc, an elliptic arc, or a segment of an hyperbola. It is an interesting fact, however, that an elliptic or hyperbolic arc in . can be parametrically represented by three component functions .(.), .(.), and .(.), where each
发表于 2025-3-30 01:39:46 | 显示全部楼层
发表于 2025-3-30 04:09:15 | 显示全部楼层
Tensor Product Surface Splines,ic surface splines analogous to the cubic space curve splines that we studied above. Again we want to construct spline surfaces that contain given points in 3-space, and, generally, that have specified directional derivatives or directional tangent vectors at these given interpolation points.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 21:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表