找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Information Bounds and Nonparametric Maximum Likelihood Estimation; Piet Groeneboom,Jon A. Wellner Book 1992 Springer Basel AG 1992 Censor

[复制链接]
查看: 51257|回复: 43
发表于 2025-3-21 18:29:03 | 显示全部楼层 |阅读模式
书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation
编辑Piet Groeneboom,Jon A. Wellner
视频video
丛书名称Oberwolfach Seminars
图书封面Titlebook: Information Bounds and Nonparametric Maximum Likelihood Estimation;  Piet Groeneboom,Jon A. Wellner Book 1992 Springer Basel AG 1992 Censor
描述This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric models, and developed the theory of non parametric maximum likelihood estimation in several particular inverse problems: interval censoring and deconvolution models. Part I, based on Jon Wellner‘s lectures, gives a brief sketch of information lower bound theory: Hajek‘s convolution theorem and extensions, useful minimax bounds for parametric problems due to Ibragimov and Has‘minskii, and a recent result characterizing differentiable functionals due to van der Vaart (1991). The differentiability theorem is illustrated with the examples of interval censoring and deconvolution (which are pursued from the estimation perspective in part II). The differentiability theorem gives a way of clearly distinguishing situations in which 1 2 the parameter of interest can be estimated at rate n / and situations in which this is not the case. However it says nothing about which rates to expect when the functional is not differentiable. Even the casual reader will notice that several m
出版日期Book 1992
关键词Censoring; Estimator; Finite; Likelihood; Random variable; Variable; expectation–maximization algorithm; fu
版次1
doihttps://doi.org/10.1007/978-3-0348-8621-5
isbn_softcover978-3-7643-2794-1
isbn_ebook978-3-0348-8621-5Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 1992
The information of publication is updating

书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation影响因子(影响力)




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation影响因子(影响力)学科排名




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation网络公开度




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation网络公开度学科排名




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation被引频次




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation被引频次学科排名




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation年度引用




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation年度引用学科排名




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation读者反馈




书目名称Information Bounds and Nonparametric Maximum Likelihood Estimation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:07:02 | 显示全部楼层
Convolution and Asymptotic Minimax TheoremsNow we give statements of several convolution and asymptotic minimax theorems. The key hypotheses involved in virtually all the different formulations of these theorems are:
发表于 2025-3-22 02:32:18 | 显示全部楼层
发表于 2025-3-22 07:41:38 | 显示全部楼层
ConsistencyConsistency of the NPMLE in the cases of interval censoring and deconvolution can be proved by a general method which has been used by Jewell (1982) in proving consistency of the NPMLE for the mixing distribution in scale mixtures of exponential distributions. We first illustrate the method for interval censoring, case 1.
发表于 2025-3-22 11:18:50 | 显示全部楼层
发表于 2025-3-22 13:44:12 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8621-5Censoring; Estimator; Finite; Likelihood; Random variable; Variable; expectation–maximization algorithm; fu
发表于 2025-3-22 21:06:01 | 显示全部楼层
Oberwolfach Seminarshttp://image.papertrans.cn/i/image/465002.jpg
发表于 2025-3-23 00:57:21 | 显示全部楼层
978-3-7643-2794-1Springer Basel AG 1992
发表于 2025-3-23 04:56:10 | 显示全部楼层
Information Bounds and Nonparametric Maximum Likelihood Estimation978-3-0348-8621-5Series ISSN 1661-237X Series E-ISSN 2296-5041
发表于 2025-3-23 06:54:42 | 显示全部楼层
Van der Vaart’s Differentiability Theoremhen we want to estimate certain functionals of the underlying parameter. For example, in example 1.1.3 we may want to estimate the mean of ., or . at a single point .. Thus, in terms of the distribution . = . of the observed data, we want to estimate the implicitly defined functional . where . is the mean of . or .(.).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 20:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表