找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Infinite Interval Problems for Differential, Difference and Integral Equations; Ravi P. Agarwal,Donal O’Regan Book 2001 Springer Science+B

[复制链接]
楼主: dilate
发表于 2025-3-26 22:39:29 | 显示全部楼层
iratory patients. Especially, some of them become so serious that they must stay in Intensive Care Unit during a long time. It causes the overload status in order to take care all patients at the same time. Therefore, the better treatment by using the mechanical ventilator in the initial stage could
发表于 2025-3-27 02:28:44 | 显示全部楼层
Second Order Boundary Value Problems,e to establish existence of solutions to boundary value problems on infinite intervals. The first approach is based on a diagonalization process whereas the second is based on the Furi-Pera fixed point theorem. Both approaches will be presented in this chapter. In Section 1.2 we list several example
发表于 2025-3-27 07:02:18 | 显示全部楼层
发表于 2025-3-27 10:40:43 | 显示全部楼层
Continuous Systems,× ℝ.. Let .[0,∞) be the space of all bounded, continuous .-vector valued functions and let . be a bounded linear operator mapping .[0, ∞) (or a subspace of .[0, ∞)) into ℝ.. In this chapter we mainly study the differential system (3.1.1) subject to the boundary conditions . In Section 3.2 we conside
发表于 2025-3-27 14:23:26 | 显示全部楼层
发表于 2025-3-27 20:16:24 | 显示全部楼层
发表于 2025-3-27 22:09:53 | 显示全部楼层
发表于 2025-3-28 05:54:39 | 显示全部楼层
Equations on Time Scales,nt as well as on a upper and lower solution idea. We recall that a .. is an arbitrary nonempty closed subset of the real numbers ℝ. The forward (respectively, backward) jump operator at t for t < sup . (respectively, for . > inf .) is defined by .for all . ∈ .. Let . : . → ℝ and let . ∈ ..
发表于 2025-3-28 07:40:58 | 显示全部楼层
发表于 2025-3-28 13:27:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-11 01:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表