找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Increasing Naturalness and Flexibility in Spoken Dialogue Interaction; 10th International W Erik Marchi,Sabato Marco Siniscalchi,Haizhou Li

[复制链接]
楼主: 复杂
发表于 2025-3-23 10:22:57 | 显示全部楼层
发表于 2025-3-23 16:25:19 | 显示全部楼层
发表于 2025-3-23 20:11:10 | 显示全部楼层
Predicting Laughter Relevance Spaces in Dialoguein dialogue and address it with various deep learning models, namely recurrent neural network (RNN), convolution neural network (CNN) and combinations of these. We also attempt to evaluate human performance for this task via an Amazon Mechanical Turk (AMT) experiment. The main finding of the present
发表于 2025-3-23 22:52:24 | 显示全部楼层
Transfer Learning for Unseen Slots in End-to-End Dialogue State Trackingwhich has not yet been discussed in the literature on conventional approaches. The goal of transfer learning is to improve DST performance for new slots by leveraging slot-independent parameters extracted from DST models for existing slots. An end-to-end DST model is composed of a spoken language un
发表于 2025-3-24 03:51:22 | 显示全部楼层
发表于 2025-3-24 06:53:26 | 显示全部楼层
发表于 2025-3-24 14:20:11 | 显示全部楼层
发表于 2025-3-24 18:47:02 | 显示全部楼层
发表于 2025-3-24 20:54:50 | 显示全部楼层
A Classification-Based Approach to Automating Human-Robot Dialogue The classifier was trained on a small corpus of multi-floor Wizard-of-Oz dialogue including two wizards: one standing in for dialogue capabilities and another for navigation. Below, we describe the implementation details of the classifier and show how it was used to automate the dialogue wizard. We
发表于 2025-3-25 00:16:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 13:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表