找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands; Martin Pfanne Book 2022 The Editor(s) (if app

[复制链接]
楼主: 珍爱
发表于 2025-3-23 11:48:54 | 显示全部楼层
发表于 2025-3-23 14:47:19 | 显示全部楼层
978-3-031-06969-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-23 20:49:36 | 显示全部楼层
In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands978-3-031-06967-3Series ISSN 1610-7438 Series E-ISSN 1610-742X
发表于 2025-3-24 00:31:41 | 显示全部楼层
Martin PfannePresents state of the art in model-based dexterous manipulation with robotic hands.Is tested in challenging real-world manipulation scenarios, using one of the most advanced robotic hand systems.Intro
发表于 2025-3-24 03:37:31 | 显示全部楼层
发表于 2025-3-24 09:10:00 | 显示全部楼层
发表于 2025-3-24 11:44:41 | 显示全部楼层
Grasp Modeling,This work is concerned with the development of methods for the localization and control of manipulated objects. However, the discussion of the proposed algorithms first requires a common model of the hand-object system, on which both components can be built. This chapter presents the utilized grasp model.
发表于 2025-3-24 18:25:04 | 显示全部楼层
Grasp State Estimation,This chapter introduces the proposed method for the estimation of the grasp state of a manipulated object. It combines different sensor modalities in order to provide a robust estimate of the object pose, contact configuration and joint position errors.
发表于 2025-3-24 20:57:04 | 显示全部楼层
Impedance-Based Object Control,Enabled by the grasp state estimation method, the developed in-hand object controller is presented in this chapter. The impedance-based method allows the compliant positioning of a grasped object inside of the hand, while at the same time regulating the internal forces on the object.
发表于 2025-3-25 01:55:59 | 显示全部楼层
Conclusion,In this book, the main algorithmic components of a model-based dexterous manipulation framework were presented. Novel approaches for the grasp state estimation and in-hand object control were developed and validated in a range of real-world experiments.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 09:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表