找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image and Graphics; 9th International Co Yao Zhao,Xiangwei Kong,David Taubman Conference proceedings 2017 Springer Nature Switzerland AG 20

[复制链接]
楼主: Affordable
发表于 2025-3-23 09:57:44 | 显示全部楼层
Jiayu Dong,Huicheng Zheng,Lina Liannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
发表于 2025-3-23 17:35:08 | 显示全部楼层
Long Zhang,Jieyu Zhao,Xiangfu Shi,Xulun Yeith the NER model to fuse both contexts and dictionary knowledge into NER. Extensive experiments on the CoNLL-2003 benchmark dataset validate the effectiveness of our approach in exploiting entity dictionaries to improve the performance of various NER models.
发表于 2025-3-23 21:24:45 | 显示全部楼层
发表于 2025-3-24 01:53:43 | 显示全部楼层
Yang Yu,Zhiqiang Gong,Ping Zhong,Jiaxin Shannd self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the propos
发表于 2025-3-24 02:56:00 | 显示全部楼层
发表于 2025-3-24 09:21:15 | 显示全部楼层
发表于 2025-3-24 11:22:01 | 显示全部楼层
Jing Wang,Hong Zhu,Shan Xue,Jing Shipairs. In the interaction layer, we initially fuse the information of the sentence pairs to obtain low-level semantic information; at the same time, we use the bi-directional attention in the machine reading comprehension model and self-attention to obtain the high-level semantic information. We use
发表于 2025-3-24 16:37:19 | 显示全部楼层
发表于 2025-3-24 21:27:34 | 显示全部楼层
发表于 2025-3-25 00:48:24 | 显示全部楼层
Wei Hu,Hongyu Qi,Zhenbing Zhao,Leilei Xuction strategies to explore its effect. We conduct experiments on seven Semantic Textual Similarity (STS) tasks. The experimental results show that our ConIsI models based on . and . achieve state-of-the-art performance, substantially outperforming previous best models SimCSE-. and SimCSE-. by 2.05%
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 01:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表