找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image Analysis and Recognition; 14th International C Fakhri Karray,Aurélio Campilho,Farida Cheriet Conference proceedings 2017 The Editor(s

[复制链接]
楼主: Malevolent
发表于 2025-3-26 22:26:33 | 显示全部楼层
Probabilistic Segmentation of Brain White Matter Lesions Using Texture-Based Classification of these lesions is typically performed manually by physicians on magnetic resonance images and represents a non-trivial, time-consuming and subjective task. The proposed method automatically segments white matter lesions using a probabilistic texture-based classification approach. It requires no p
发表于 2025-3-27 04:35:36 | 显示全部楼层
发表于 2025-3-27 06:56:15 | 显示全部楼层
Ejection Fraction Estimation Using a Wide Convolutional Neural Networkutional neural network to localize the left ventricle from MRI images. Then, the systole and diastole images can be determined based on the size of the localized left ventricle. Next, the network is used in order to segment the region of interest from the diastole and systole images. The end systoli
发表于 2025-3-27 13:14:29 | 显示全部楼层
Fully Deep Convolutional Neural Networks for Segmentation of the Prostate Gland in Diffusion-Weightering and detecting prostate tumors. The clinical guidelines to interpret DW-MRI for prostate cancer requires the segmentation of the prostate gland into different zones. Moreover, computer-aided detection tools which are designed to detect prostate cancer automatically, usually require the segmentat
发表于 2025-3-27 14:18:26 | 显示全部楼层
发表于 2025-3-27 20:39:36 | 显示全部楼层
发表于 2025-3-27 23:46:31 | 显示全部楼层
Object Boundary Based Denoising for Depth Images suffers from depth image noise. This paper proposes a solution to the problem by estimating depth edges that correspond to the object boundaries and using them as priors in the hole filling process. This method exhibits quantitative and qualitative improvements over the current state-of-the-art met
发表于 2025-3-28 02:56:36 | 显示全部楼层
发表于 2025-3-28 09:31:02 | 显示全部楼层
发表于 2025-3-28 12:41:18 | 显示全部楼层
Image Analysis and Recognition978-3-319-59876-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 10:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表