找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image Analysis and Processing – ICIAP 2022; 21st International C Stan Sclaroff,Cosimo Distante,Federico Tombari Conference proceedings 2022

[复制链接]
查看: 46443|回复: 57
发表于 2025-3-21 16:04:11 | 显示全部楼层 |阅读模式
书目名称Image Analysis and Processing – ICIAP 2022
副标题21st International C
编辑Stan Sclaroff,Cosimo Distante,Federico Tombari
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Image Analysis and Processing – ICIAP 2022; 21st International C Stan Sclaroff,Cosimo Distante,Federico Tombari Conference proceedings 2022
描述The proceedings set LNCS 13231, 13232, and 13233 constitutes the refereed proceedings of the 21st International Conference on Image Analysis and Processing, ICIAP 2022, which was held during May 23-27, 2022, in Lecce, Italy,.The 168 papers included in the proceedings were carefully reviewed and selected from 307 submissions. They deal with video analysis and understanding; pattern recognition and machine learning; deep learning; multi-view geometry and 3D computer vision; image analysis, detection and recognition; multimedia; biomedical and assistive technology; digital forensics and biometrics; image processing for cultural heritage; robot vision; etc. .
出版日期Conference proceedings 2022
关键词artificial intelligence; communication systems; computer networks; computer vision; education; Human-Comp
版次1
doihttps://doi.org/10.1007/978-3-031-06433-3
isbn_softcover978-3-031-06432-6
isbn_ebook978-3-031-06433-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Image Analysis and Processing – ICIAP 2022影响因子(影响力)




书目名称Image Analysis and Processing – ICIAP 2022影响因子(影响力)学科排名




书目名称Image Analysis and Processing – ICIAP 2022网络公开度




书目名称Image Analysis and Processing – ICIAP 2022网络公开度学科排名




书目名称Image Analysis and Processing – ICIAP 2022被引频次




书目名称Image Analysis and Processing – ICIAP 2022被引频次学科排名




书目名称Image Analysis and Processing – ICIAP 2022年度引用




书目名称Image Analysis and Processing – ICIAP 2022年度引用学科排名




书目名称Image Analysis and Processing – ICIAP 2022读者反馈




书目名称Image Analysis and Processing – ICIAP 2022读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:40:17 | 显示全部楼层
Image Analysis and Processing – ICIAP 2022978-3-031-06433-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 01:01:52 | 显示全部楼层
https://doi.org/10.1007/978-3-031-06433-3artificial intelligence; communication systems; computer networks; computer vision; education; Human-Comp
发表于 2025-3-22 08:22:27 | 显示全部楼层
发表于 2025-3-22 09:42:51 | 显示全部楼层
Hangul Fonts Dataset: A Hierarchical and Compositional Dataset for Investigating Learned Representattivations represent hierarchy and compositionality is important both for understanding deep representation learning and for applying deep networks in domains where interpretability is crucial. However, current benchmark machine learning datasets either have little hierarchical or compositional struc
发表于 2025-3-22 12:57:33 | 显示全部楼层
Out-of-Distribution Detection Using Outlier Detection Methodsmalous input. Similarly, it was shown that feature extraction models in combination with outlier detection algorithms are well suited to detect anomalous input. We use outlier detection algorithms to detect anomalous input as reliable as specialized methods from the field of OOD. No neural network a
发表于 2025-3-22 18:24:50 | 显示全部楼层
发表于 2025-3-22 22:41:04 | 显示全部楼层
Computationally Efficient Rehearsal for Online Continual Learningwhat they have already learned. Rehearsal methods offer a simple countermeasure to help avoid this catastrophic forgetting which frequently occurs in dynamic situations and is a major limitation of machine learning models. These methods continuously train neural networks using a mix of data both fro
发表于 2025-3-23 03:58:44 | 显示全部楼层
Recurrent Vision Transformer for Solving Visual Reasoning Problems reasoning problems. Inspired by the recent success of the Transformer network in computer vision, in this paper, we introduce the Recurrent Vision Transformer (RViT) model. Thanks to the impact of recurrent connections and spatial attention in reasoning tasks, this network achieves competitive resu
发表于 2025-3-23 06:34:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 22:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表