找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image Analysis and Processing – ICIAP 2022; 21st International C Stan Sclaroff,Cosimo Distante,Federico Tombari Conference proceedings 2022

[复制链接]
楼主: MIFF
发表于 2025-3-28 15:05:19 | 显示全部楼层
发表于 2025-3-28 20:34:00 | 显示全部楼层
发表于 2025-3-28 23:00:44 | 显示全部楼层
Computationally Efficient Rehearsal for Online Continual Learningrained environments commonly found in online continual learning for image analysis. This work evaluates several rehearsal training strategies for continual online learning and proposes the combined use of a drift detector that decides on (a) when to train using data from the buffer and the online st
发表于 2025-3-29 05:37:17 | 显示全部楼层
Recurrent Vision Transformer for Solving Visual Reasoning Problemsobtained. In the end, this study can lay the basis for a deeper understanding of the role of attention and recurrent connections for solving visual abstract reasoning tasks. The code for reproducing our results is publicly available here: ..
发表于 2025-3-29 07:45:12 | 显示全部楼层
发表于 2025-3-29 13:15:22 | 显示全部楼层
发表于 2025-3-29 19:27:07 | 显示全部楼层
Case Study on the Use of the SafeML Approach in Training Autonomous Driving Vehiclesftware, based on the outdated training data, no longer responds adequately to the current field situation. In a previous research paper, we developed the SafeML approach with colleagues from the University of Hull, where datasets are compared for their statistical distance measures. In doing so, we
发表于 2025-3-29 22:16:54 | 显示全部楼层
User-Biased Food Recognition for Health Monitoringerapy. The information inferred from the users’ eating habits is then exploited to track and monitor the dietary habits of people involved in a smoke quitting protocol. Experimental results show that the proposed food recognition method outperforms the baseline model results on the FoodRec-50 datase
发表于 2025-3-30 01:40:45 | 显示全部楼层
Unsupervised Person Re-identification Based on Skeleton Joints Using Graph Convolutional Networkscting P identities and K instances (PK sampling) to generate pseudo-labels for the unlabeled data. By iteratively optimizing these modules, our model extracts robust spatial-temporal information that can alleviate the occlusion problem. We conduct experiments on two benchmarks: MARS and DukeMTMC-Vid
发表于 2025-3-30 05:26:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 23:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表