找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image Analysis; 22nd Scandinavian Co Rikke Gade,Michael Felsberg,Joni-Kristian Kämäräin Conference proceedings 2023 The Editor(s) (if appli

[复制链接]
楼主: Magnanimous
发表于 2025-3-25 06:17:03 | 显示全部楼层
Prototype Softmax Cross Entropy: A New Perspective on Softmax Cross Entropy focus on the loss function for the feature encoder. We show that Softmax Cross Entropy (SCE) can be interpreted as a special kind of loss function in contrastive learning with prototypes. This insight provides a completely new perspective on cross entropy, allowing the derivation of a new generaliz
发表于 2025-3-25 11:06:44 | 显示全部楼层
发表于 2025-3-25 14:50:20 | 显示全部楼层
Synthesizing Hard Training Data from Latent Hierarchical Representationsto classify. This is used for data from an automatic visual defect inspection system, specifically images of vials with and without chipped glass. The hard samples were found by training ConvNeXt classifiers and using the confidences of the classifiers on the training dataset. VQ-VAE2 was used to ob
发表于 2025-3-25 19:36:57 | 显示全部楼层
Rigidity Preserving Image Transformations and Equivariance in Perspectiveurns out that the only rigidity preserving image transformations are homographies corresponding to rotating the camera. In particular, 2D translations of pinhole images are not rigidity preserving. Hence, when using CNNs for 3D inference tasks, it can be beneficial to modify the inductive bias from
发表于 2025-3-25 22:18:58 | 显示全部楼层
Tangent Phylogenetic PCAations are not independent, due to shared evolutionary history. The method works on Euclidean data, but in evolutionary biology there is a need for applying it to data on manifolds, particularly shapes. We provide a generalization of p-PCA to data lying on Riemannian manifolds, called .. Tangent p-P
发表于 2025-3-26 03:14:01 | 显示全部楼层
Deep Simplex Classifier for Maximizing the Margin in Both Euclidean and Angular SpacesEuclidean or angular spaces. Euclidean distances between sample vectors are used during classification for the methods maximizing the margin in Euclidean spaces whereas the Cosine similarity distance is used during the testing stage for the methods maximizing margin in the angular spaces. This paper
发表于 2025-3-26 06:15:16 | 显示全部楼层
发表于 2025-3-26 09:22:55 | 显示全部楼层
发表于 2025-3-26 16:20:37 | 显示全部楼层
From Local Binary Patterns to Pixel Difference Networks for Efficient Visual Representation Learningnal neural networks (CNNs) can automatically learn powerful task-aware features that are more discriminative and of higher representational capacity. To some extent, such hand-crafted features can be safely ignored when designing deep computer vision models. Nevertheless, due to LBP’s preferable pro
发表于 2025-3-26 18:43:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 19:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表