用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Identification of Pathogenic Social Media Accounts; From Data to Intelli Hamidreza Alvari,Elham Shaabani,Paulo Shakarian Book 2021 The Auth

[复制链接]
楼主: endocarditis
发表于 2025-3-26 22:40:36 | 显示全部楼层
发表于 2025-3-27 04:58:50 | 显示全部楼层
发表于 2025-3-27 09:09:25 | 显示全部楼层
发表于 2025-3-27 12:06:10 | 显示全部楼层
发表于 2025-3-27 14:29:32 | 显示全部楼层
发表于 2025-3-27 20:38:12 | 显示全部楼层
Graph-Based Semi-Supervised and Supervised Approaches for Detecting Pathogenic Social Media Accounto account. Results on the ISIS-A dataset demonstrate the advantage of our proposed frameworks. We show our approach achieves 0.28 improvement in F1 score over existing approaches with the precision of 0.90 and F1 score of 0.63.
发表于 2025-3-27 23:04:05 | 显示全部楼层
Characterizing Pathogenic Social Media Accounts,ell-known statistical technique Hawkes processes are utilized to distinguish between PSM and non-PSM accounts. Results on real-world ISIS-related datasets from Twitter demonstrate that PSMs behave significantly differently from regular users while disseminating information.
发表于 2025-3-28 04:32:56 | 显示全部楼层
发表于 2025-3-28 08:25:05 | 显示全部楼层
Feature-Driven Method for Identifying Pathogenic Social Media Accounts,ated website, etc.). Finally, for the content-related information, we examine attributes (e.g., number of hashtags, suspicious hashtags, etc.) from tweets posted by users. Experiments on real-world Twitter data from different countries demonstrate the effectiveness of the proposed approach in identifying PSM users.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 07:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表