找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics; Liang-Yee Cheng Conference proceedings 2023 The Edi

[复制链接]
楼主: 有灵感
发表于 2025-3-28 15:10:46 | 显示全部楼层
发表于 2025-3-28 19:16:36 | 显示全部楼层
A Note on Local Intersection Multiplicity of Two Plane Curvescounted with multiplicity). The aim of this paper is to investigate under which conditions the equality occurs. These conditions are given in terms of individual common tangents of . and . at . and their relations to the polynomials defining these curves.
发表于 2025-3-29 01:02:19 | 显示全部楼层
2367-4512 ry, Computer Graphics, and Graphics Education.Written by lea.This book covers recent achievements on the ever-expanding field of Geometry and Graphics on both analogical and digital fronts, from theoretical investigations to a broad range of applications, new teaching methodologies, and historical a
发表于 2025-3-29 06:08:25 | 显示全部楼层
Four-Dimensional Visual Exploration of the Complex Number Plane we describe a graphical representation of complex lines in the four-dimensional space and discuss the elementary incidence properties of points and lines. This paper provides an accessible method of visualization of the complex number plane.
发表于 2025-3-29 11:14:21 | 显示全部楼层
发表于 2025-3-29 14:51:41 | 显示全部楼层
Locally Flat and Rigidly Foldable Discretizations of Conic Crease Patterns with Reflecting Rule Lineetized crease patterns are rigidly foldable. In the case of the circumscribed discretization, the crease pattern is also locally flat foldable. On the other hand, only careful sampling in the inscribed method results in locally flat-foldable crease patterns.
发表于 2025-3-29 19:34:37 | 显示全部楼层
发表于 2025-3-29 22:19:19 | 显示全部楼层
发表于 2025-3-30 00:09:35 | 显示全部楼层
发表于 2025-3-30 06:53:08 | 显示全部楼层
On the Diagonals of Billiardse of a Henrici framework. Its spatial poses define focal billiards in an ellipsoid with a fixed focal conic .. We prove that for even . the .-th diagonals are located on a motion-invariant one-sheeted hyperboloid.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 21:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表