找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[复制链接]
楼主: Helmet
发表于 2025-3-25 05:20:34 | 显示全部楼层
Werte schaffen durch M&A-TransaktionenThe purpose of this chapter is to establish the main result of this book, i.e., we give a Riemann-Roch-Grothendieck formula for the class . (.,.). When ., this result was already established in Theorem 5.2.1 using elliptic superconnections. The introduction in . of hypoelliptic superconnections did not allow us to eliminate this assumption.
发表于 2025-3-25 09:27:31 | 显示全部楼层
The Riemannian adiabatic limit,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in [B86a], and continued in Bismut-Cheeger [BC89], Berline-Getzler-Vergne [BeGeV92], Berthomieu-Bismut [BerB94] and Bismut [B97].
发表于 2025-3-25 15:17:51 | 显示全部楼层
发表于 2025-3-25 17:11:23 | 显示全部楼层
发表于 2025-3-25 20:20:36 | 显示全部楼层
发表于 2025-3-26 01:21:44 | 显示全部楼层
The hypoelliptic superconnections,The purpose of this chapter is to extend the results of [B08, section 3] to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..
发表于 2025-3-26 07:52:05 | 显示全部楼层
发表于 2025-3-26 09:42:53 | 显示全部楼层
发表于 2025-3-26 14:19:55 | 显示全部楼层
The hypoelliptic superconnection forms when ,,The purpose of this chapter is to study the hypoelliptic superconnection forms of . in the case where .. In particular, we show that, as in the elliptic case, the form . can be explicitly computed.
发表于 2025-3-26 19:20:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 04:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表