找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[复制链接]
楼主: Helmet
发表于 2025-3-23 10:25:16 | 显示全部楼层
发表于 2025-3-23 17:32:22 | 显示全部楼层
发表于 2025-3-23 20:45:25 | 显示全部楼层
Kleine Kulturgeschichte der Werte,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in [B86a], and continued in Bismut-Cheeger [BC89], Berline-Getzler-Vergne [BeGeV92], Berthomieu-Bismut [BerB94] and Bismut [B97].
发表于 2025-3-23 23:41:34 | 显示全部楼层
发表于 2025-3-24 03:06:27 | 显示全部楼层
发表于 2025-3-24 06:56:33 | 显示全部楼层
https://doi.org/10.1007/978-3-658-23299-3The purpose of this chapter is to specialize the results of . to the case where .. We compute . explicitly, and we establish Theorem 0.1.1 in this special case. In ., we will get rid of any assumption on ...
发表于 2025-3-24 11:20:30 | 显示全部楼层
https://doi.org/10.1007/978-3-662-59194-9The purpose of this chapter is to extend the results of [B08, section 3] to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..
发表于 2025-3-24 16:53:37 | 显示全部楼层
https://doi.org/10.1007/978-3-658-14873-7In this chapter, we construct hypoelliptic superconnection forms . that are associated with the hypoelliptic superconnections of Section 6, and we prove that their class in . (.,.) does not depend on ., and coincides with the class of the elliptic superconnection forms ..
发表于 2025-3-24 21:25:28 | 显示全部楼层
发表于 2025-3-25 02:15:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 04:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表