找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hyperspectral Image Analysis; Advances in Machine Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec

[复制链接]
查看: 39620|回复: 52
发表于 2025-3-21 16:22:49 | 显示全部楼层 |阅读模式
书目名称Hyperspectral Image Analysis
副标题Advances in Machine
编辑Saurabh Prasad,Jocelyn Chanussot
视频video
概述Provides a comprehensive review of the state of the art in hyperspectral image analysis.Presents perspectives from experts who are pioneers in a broad range of signal processing and machine learning f
丛书名称Advances in Computer Vision and Pattern Recognition
图书封面Titlebook: Hyperspectral Image Analysis; Advances in Machine  Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec
描述.This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas ofimage analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, g
出版日期Book 2020
关键词Hyperspectral Image Analysis; Manifold Learning; Subspace Learning; Computational Imaging; Target Recogn
版次1
doihttps://doi.org/10.1007/978-3-030-38617-7
isbn_softcover978-3-030-38619-1
isbn_ebook978-3-030-38617-7Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Hyperspectral Image Analysis影响因子(影响力)




书目名称Hyperspectral Image Analysis影响因子(影响力)学科排名




书目名称Hyperspectral Image Analysis网络公开度




书目名称Hyperspectral Image Analysis网络公开度学科排名




书目名称Hyperspectral Image Analysis被引频次




书目名称Hyperspectral Image Analysis被引频次学科排名




书目名称Hyperspectral Image Analysis年度引用




书目名称Hyperspectral Image Analysis年度引用学科排名




书目名称Hyperspectral Image Analysis读者反馈




书目名称Hyperspectral Image Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:56:52 | 显示全部楼层
2191-6586 in a broad range of signal processing and machine learning f.This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding
发表于 2025-3-22 02:34:14 | 显示全部楼层
发表于 2025-3-22 07:15:59 | 显示全部楼层
发表于 2025-3-22 10:43:28 | 显示全部楼层
发表于 2025-3-22 14:07:42 | 显示全部楼层
发表于 2025-3-22 19:47:27 | 显示全部楼层
Low Dimensional Manifold Model in Hyperspectral Image Reconstruction,inimization and advanced numerical discretization. Experiments on the reconstruction of hyperspectral images from sparse and noisy sampling demonstrate the superiority of LDMM in terms of both speed and accuracy.
发表于 2025-3-22 23:43:28 | 显示全部楼层
发表于 2025-3-23 05:03:42 | 显示全部楼层
发表于 2025-3-23 08:46:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 08:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表