找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hyperspectral Image Analysis; Advances in Machine Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec

[复制链接]
楼主: 愚蠢地活
发表于 2025-3-28 18:40:35 | 显示全部楼层
发表于 2025-3-28 21:15:17 | 显示全部楼层
发表于 2025-3-28 23:03:04 | 显示全部楼层
Machine Learning Methods for Spatial and Temporal Parameter Estimation, monitoring of the biosphere has large societal, economical, and environmental implications, given the increasing demand of biofuels and food by the world population. The current democratization of machine learning, big data, and high processing capabilities allow us to take such endeavor in a decis
发表于 2025-3-29 06:01:41 | 显示全部楼层
Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms, networks, along with their variants, is well documented for color image analysis. However, remote sensing and biomedical imaging often rely on hyperspectral images containing more than three channels for pixel-level characterization. Deep learning can facilitate image analysis in multi-channel imag
发表于 2025-3-29 10:19:41 | 显示全部楼层
发表于 2025-3-29 13:50:02 | 显示全部楼层
,Advances in Deep Learning for Hyperspectral Image Analysis—Addressing Challenges Arising in Practiction—these are primarily applied to color imagery and video. In recent years, there has been an emergence of deep learning algorithms being applied to hyperspectral and multispectral imagery for remote sensing and biomedicine tasks. These multi-channel images come with their own unique set of challe
发表于 2025-3-29 18:38:58 | 显示全部楼层
发表于 2025-3-29 23:00:05 | 显示全部楼层
发表于 2025-3-29 23:58:38 | 显示全部楼层
Sparsity-Based Methods for Classification,er introduces the sparse representation methodology and its related techniques for hyperspectral image classification. To start with, we provide a brief review on the mechanism, models, and algorithms of sparse representation classification (SRC). We then introduce several advanced SRC methods that
发表于 2025-3-30 04:34:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 09:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表