找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hypergeometric Summation; An Algorithmic Appro Wolfram Koepf Textbook 2014Latest edition Springer-Verlag London 2014 Algorithmic Summation.

[复制链接]
楼主: 夹子
发表于 2025-3-25 05:26:25 | 显示全部楼层
Hypergeometric Database,In this chapter we list some of the major hypergeometric identities. Note that most of these do not require any variables to have integer values. We give examples showing how this database can be used to generate binomial identities.
发表于 2025-3-25 08:25:14 | 显示全部楼层
发表于 2025-3-25 14:02:47 | 显示全部楼层
发表于 2025-3-25 16:50:42 | 显示全部楼层
The Wilf-Zeilberger Method,In this chapter, we study the connection between Gosper’s algorithm and definite sums.Firstly, we give a direct application of Gosper’s algorithm to definite summation. The application of Gosper’s algorithm to a modified input can prove definite hypergeometric identities.
发表于 2025-3-25 20:32:08 | 显示全部楼层
,Zeilberger’s Algorithm,In this chapter, we introduce Zeilberger’s extension of Gosper’s algorithm, using which one can not only prove hypergeometric identities but also sum definite series in many cases, if they represent hypergeometric terms.
发表于 2025-3-26 00:49:12 | 显示全部楼层
Extensions of the Algorithms,In this chapter, we extend Gosper’s, Wilf-Zeilberger’s and Zeilberger’s methods to accept rational-linear inputs rather than only integer-linear ones. For such an input . is not always rational, so that Gosper’s algorithm may not apply.
发表于 2025-3-26 05:50:19 | 显示全部楼层
发表于 2025-3-26 09:25:14 | 显示全部楼层
Hyperexponential Antiderivatives,In this chapter, we consider a continuous counterpart of Gosper’s algorithm. The appropriate question is to find a hyperexponential term antiderivative .(.) of a given .(.) whenever one exists.
发表于 2025-3-26 13:00:24 | 显示全部楼层
Holonomic Equations for Integrals,Now we are ready to consider . of hyperexponential terms. If the corresponding indefinite integral is a hyperexponential term again, then the continuous Gosper algorithm applies, and definite integration is trivial.
发表于 2025-3-26 20:39:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 22:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表