找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hypergeometric Summation; An Algorithmic Appro Wolfram Koepf Textbook 2014Latest edition Springer-Verlag London 2014 Algorithmic Summation.

[复制链接]
楼主: 夹子
发表于 2025-3-23 10:23:01 | 显示全部楼层
Wolfram Koepf, Switzerland, on July 10-11, 2006. The manuscripts are organized around three thematic sections which cover several of the major aspects of our rapidly growing ?eld: anatomical modeling and tissue properties, simulation of biophysical processes, as well as systems and applications. The symposium pr
发表于 2025-3-23 15:05:13 | 显示全部楼层
发表于 2025-3-23 21:57:04 | 显示全部楼层
https://doi.org/10.1007/978-1-4471-6464-7Algorithmic Summation; Antidifference; Basic Hypergeometric Series; Differential Equation; Fasenmyer Alg
发表于 2025-3-24 01:43:50 | 显示全部楼层
发表于 2025-3-24 03:40:19 | 显示全部楼层
发表于 2025-3-24 06:54:34 | 显示全部楼层
,Petkovšek’s and van Hoeij’s Algorithm,if the order of the resulting recurrence equation is one, or if the latter contains only two shifts . and . for some ., then one finds a hypergeometric term representation for the sum under consideration using . initial values. In this chapter we give algorithms which find all hypergeometric term solutions of a holonomic recurrence equation.
发表于 2025-3-24 14:16:03 | 显示全部楼层
发表于 2025-3-24 16:04:29 | 显示全部楼层
Hypergeometric Summation978-1-4471-6464-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-24 21:39:59 | 显示全部楼层
The Gamma Function,Apart from the elementary transcendental functions such as the exponential and trigonometric functions and their inverses, the Gamma function is probably the most important transcendental function. It was defined by Euler to interpolate the factorials at noninteger arguments.
发表于 2025-3-25 01:23:44 | 显示全部楼层
Hypergeometric Identities,In this chapter we deal with hypergeometric identities.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 22:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表