找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Human Motion; Understanding, Model Bodo Rosenhahn,Reinhard Klette,Dimitris Metaxas Book 2008 Springer Science+Business Media B.V. 2008 3D.P

[复制链接]
楼主: Reticent
发表于 2025-3-23 11:13:23 | 显示全部楼层
Markerless Motion Capture for Biomechanical Applications markerless motion capture is critical. The implementation of this new methodology offers the promise for simple, timeefficient, and potentially more meaningful assessments of human movement in research and clinical practice.
发表于 2025-3-23 16:12:18 | 显示全部楼层
Contours, Optic Flow, and Prior Knowledge: Cues for Capturing 3D Human Motion in Videosbackground. The optic flow computed between two successive frames is used for pose prediction. It improves the quality of tracking in case of fast motion and/or low frame rates. In order to cope with unreliable or insufficient data, the framework is further extended by the use of prior knowledge on static joint angle configurations.
发表于 2025-3-23 18:35:28 | 显示全部楼层
Motion Capture for Interaction Environmentslable in real-time. Because speed is an issue, different optimization methods are compared, namely Gauss-Newton(Levenberg-Marquardt), Gradient Descent, and Stochastic Meta Descent. Experiments on human movement show the advantages and disadvantages of each method.
发表于 2025-3-23 22:37:54 | 显示全部楼层
发表于 2025-3-24 02:31:25 | 显示全部楼层
发表于 2025-3-24 07:56:00 | 显示全部楼层
https://doi.org/10.1007/978-1-4020-6693-13D; Performance; animation; biomechanics; computer graphics; modeling; rendering; robotics
发表于 2025-3-24 12:09:54 | 显示全部楼层
发表于 2025-3-24 18:18:04 | 显示全部楼层
发表于 2025-3-24 19:53:18 | 显示全部楼层
Topologically Constrained Isometric Embeddingc geometry of manifolds with complicated topology. Since our algorithm matches nonlocal structures, it is robust even to strong noise. We show experimental results on both synthetic and real data demonstrating the advantages of our approach over stateof- the-art manifold learning methods.
发表于 2025-3-25 02:37:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 20:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表