找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Holomorphic Curves in Symplectic Geometry; Michèle Audin,Jacques Lafontaine Book 1994 Springer Basel 1994 Area.Immersion.Riemannian geomet

[复制链接]
楼主: 会议记录
发表于 2025-3-25 04:24:33 | 显示全部楼层
Exemples de courbes pseudo-holomorphes en géométrie riemannienneque complexes est une application dont la différentielle commute avec les structures complexes. Enfin une .. dans une variété presque complexe est une surface réelle dont le plan tangent est stable par rapport à la structure complexe (voir les chapitres précédents et notamment II et III).
发表于 2025-3-25 08:50:29 | 显示全部楼层
发表于 2025-3-25 15:36:41 | 显示全部楼层
Progress in Mathematicshttp://image.papertrans.cn/h/image/427945.jpg
发表于 2025-3-25 19:19:07 | 显示全部楼层
Holomorphic Curves in Symplectic Geometry978-3-0348-8508-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-25 22:42:37 | 显示全部楼层
发表于 2025-3-26 00:15:51 | 显示全部楼层
发表于 2025-3-26 07:41:31 | 显示全部楼层
Introduction Applications of pseudo-holomorphic curves to symplectic topologyThis chapter is an introduction to the book. First we will describe some problems in symplectic geometry, or more exactly topology, and the way to solve them using pseudo-holomorphic curves techniques. Then we describe very roughly the contents of the book. For the basic results in geometry, the reader can consult chapters I, II or III.
发表于 2025-3-26 10:39:16 | 显示全部楼层
An introduction to symplectic geometryA . on a vector space . is a skew-symmetric bilinear form .: . × .. such that . is an isomorphism. Here .* denotes the dual of .
发表于 2025-3-26 13:50:55 | 显示全部楼层
Some relevant Riemannian geometryThe first two sections of this chapter are an introduction to Riemannian geometry. It is not self-contained, and precise references are provided when necessary. However, we chosed to give some proofs which have a metric flavour.
发表于 2025-3-26 18:29:10 | 显示全部楼层
Connexions linéaires, classes de Chern, théorème de Riemann-RochCe chapitre se divise en trois parties.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 20:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表