找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: High Performance Computing for Computational Science – VECPAR 2018; 13th International C Hermes Senger,Osni Marques,Veronica Gil-Costa Conf

[复制链接]
查看: 11654|回复: 63
发表于 2025-3-21 17:02:48 | 显示全部楼层 |阅读模式
书目名称High Performance Computing for Computational Science – VECPAR 2018
副标题13th International C
编辑Hermes Senger,Osni Marques,Veronica Gil-Costa
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: High Performance Computing for Computational Science – VECPAR 2018; 13th International C Hermes Senger,Osni Marques,Veronica Gil-Costa Conf
描述.This book constitutes the thoroughly refereed post-conference proceedings of the 13th International Conference on High Performance Computing in Computational Science, VECPAR 2018, held in São Pedro, Brazil, in September 2018.. .The 17 full papers and one short paper included in this book were carefully reviewed and selected from 32 submissions presented at the conference. The papers cover the following topics: heterogeneous systems, shared memory systems and GPUs, and techniques including domain decomposition, scheduling and load balancing, with a strong focus on computational science applications..
出版日期Conference proceedings 2019
关键词artificial intelligence; Graphics Processing Unit (GPU); heuristic methods; load balancing; microprocess
版次1
doihttps://doi.org/10.1007/978-3-030-15996-2
isbn_softcover978-3-030-15995-5
isbn_ebook978-3-030-15996-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称High Performance Computing for Computational Science – VECPAR 2018影响因子(影响力)




书目名称High Performance Computing for Computational Science – VECPAR 2018影响因子(影响力)学科排名




书目名称High Performance Computing for Computational Science – VECPAR 2018网络公开度




书目名称High Performance Computing for Computational Science – VECPAR 2018网络公开度学科排名




书目名称High Performance Computing for Computational Science – VECPAR 2018被引频次




书目名称High Performance Computing for Computational Science – VECPAR 2018被引频次学科排名




书目名称High Performance Computing for Computational Science – VECPAR 2018年度引用




书目名称High Performance Computing for Computational Science – VECPAR 2018年度引用学科排名




书目名称High Performance Computing for Computational Science – VECPAR 2018读者反馈




书目名称High Performance Computing for Computational Science – VECPAR 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:53:17 | 显示全部楼层
Ricardo Leite,Ricardo Rochal plane and determining the most significant ones for detecting BGP abnormalities. Also, it provides a review of the recent works concerned with using Machine Learning algorithms to detect BGP anomalies.
发表于 2025-3-22 02:50:50 | 显示全部楼层
Gesiel Rios Lopes,Paulo Sergio Lopes de Souza,Alexandre C. B. Delbemvices that will be able to carry out a variety of tasks not in a standalone mode as usually done today, but taking into full account dynamic and context specific information, and following dynamic collaborative approaches.
发表于 2025-3-22 07:48:24 | 显示全部楼层
Gabriel Freytag,Philippe Olivier Alexandre Navaux,João Vicente Ferreira Lima,Lucas Mello Schnorr,Paos well, such approach gives support to the representation of inaccurate relationships and unpredictable situations. After discussing the semantics behind the language directives, an illustrative scenario is presented.
发表于 2025-3-22 09:49:36 | 显示全部楼层
Antonio-Jose Lázaro-Muñoz,Bernabé López-Albelda,Jose María González-Linares,Nicolás Guily, we compare runtime of our algorithms with those of two others with similar aims. We also conjecture that our scheme is secure against chosen ciphertext attacks because of our inclusion of Simplified Optimal Asymmetric Encryption Padding of messages.
发表于 2025-3-22 13:08:06 | 显示全部楼层
Performance Evaluation of Deep Learning Frameworks over Different Architectureslow outperforms Caffe by presenting times up to 2 times lower than Caffe for the GoogLeNet Model. The work also presents the impact of lack of support by the frameworks for NUMA Architectures, and relates a problem stated on loss computation by the Caffe Framework.
发表于 2025-3-22 17:50:01 | 显示全部楼层
发表于 2025-3-22 22:28:01 | 显示全部楼层
0302-9743 ared memory systems and GPUs, and techniques including domain decomposition, scheduling and load balancing, with a strong focus on computational science applications..978-3-030-15995-5978-3-030-15996-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-23 04:44:58 | 显示全部楼层
发表于 2025-3-23 07:31:59 | 显示全部楼层
Communication–Free Parallel Mesh Multiplication for Large Scale Simulationstion. In the present work we develop a uniform edge-based parallel tetrahedral mesh refinement scheme completely free of communication, fast, simple to implement and highly scalable. This is achieved by an index generation for subdomain interface grid points based on special pairing functions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 19:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表