找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: High Dimensional Probability VI; The Banff Volume Christian Houdré,David M. Mason,Jon A. Wellner Conference proceedings 2013 Springer Basel

[复制链接]
查看: 49276|回复: 55
发表于 2025-3-21 18:18:05 | 显示全部楼层 |阅读模式
书目名称High Dimensional Probability VI
副标题The Banff Volume
编辑Christian Houdré,David M. Mason,Jon A. Wellner
视频video
概述Gives a unique view on the mathematical methods used by experts to establish limit theorems in probability and statistics, which reside in high dimensions.Displays the wide scope of the types of probl
丛书名称Progress in Probability
图书封面Titlebook: High Dimensional Probability VI; The Banff Volume Christian Houdré,David M. Mason,Jon A. Wellner Conference proceedings 2013 Springer Basel
描述.This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. .High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. .The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.​.
出版日期Conference proceedings 2013
关键词high dimensional probability; limit theorems; probability distributions
版次1
doihttps://doi.org/10.1007/978-3-0348-0490-5
isbn_softcover978-3-0348-0799-9
isbn_ebook978-3-0348-0490-5Series ISSN 1050-6977 Series E-ISSN 2297-0428
issn_series 1050-6977
copyrightSpringer Basel 2013
The information of publication is updating

书目名称High Dimensional Probability VI影响因子(影响力)




书目名称High Dimensional Probability VI影响因子(影响力)学科排名




书目名称High Dimensional Probability VI网络公开度




书目名称High Dimensional Probability VI网络公开度学科排名




书目名称High Dimensional Probability VI被引频次




书目名称High Dimensional Probability VI被引频次学科排名




书目名称High Dimensional Probability VI年度引用




书目名称High Dimensional Probability VI年度引用学科排名




书目名称High Dimensional Probability VI读者反馈




书目名称High Dimensional Probability VI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:22:51 | 显示全部楼层
发表于 2025-3-22 03:23:04 | 显示全部楼层
发表于 2025-3-22 04:48:30 | 显示全部楼层
Maximal Inequalities for Centered Norms of Sums of Independent Random VectorsLet . be independent random variables and . We show that for any constants ...We also discuss similar inequalities for sums of Hilbert and Banach spacevalued random vectors.
发表于 2025-3-22 11:53:40 | 显示全部楼层
On Some Gaussian Concentration Inequality for Non-Lipschitz FunctionsA concentration inequality for functions of a pair of Gaussian random vectors is established. Instead of the usual Lipschitz condition some boundedness of second-order derivatives is assumed. This result can be viewed as an extension of a well-known tail estimate for Gaussian random bi-linear forms to the non-linear case.
发表于 2025-3-22 15:13:35 | 显示全部楼层
发表于 2025-3-22 19:38:55 | 显示全部楼层
发表于 2025-3-22 22:38:12 | 显示全部楼层
发表于 2025-3-23 02:25:18 | 显示全部楼层
Strong Log-concavity is Preserved by Convolutionon of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong logconcavity under convolution has apparently not been investigated previously in the continuous case.
发表于 2025-3-23 06:01:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 21:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表