找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Heat Kernels and Dirac Operators; Nicole Berline,Ezra Getzler,Michèle Vergne Textbook 20041st edition Springer-Verlag Berlin Heidelberg 20

[复制链接]
楼主: odometer
发表于 2025-3-25 06:20:26 | 显示全部楼层
发表于 2025-3-25 10:03:50 | 显示全部楼层
发表于 2025-3-25 13:55:08 | 显示全部楼层
发表于 2025-3-25 19:18:55 | 显示全部楼层
The Equivariant Index Theorem,t ℰ → . be a Clifford module with Clifford connection; if . acts on . compatibly with the Clifford action and Clifford connection, we call . an equivariant Clifford module. If D is the Dirac operator on . associated to the given data, then D commutes with the action of .; hence, the kernel of D is a
发表于 2025-3-25 22:42:05 | 显示全部楼层
Equivariant Differential Forms,sible to localize the calculation of such integrals to the zero set of a vector field on the manifold. In this chapter, we will describe a generalization of this, a localization formula for equivariant differential forms. Only the results of Chapter 1 are a prerequisite to reading this chapter.
发表于 2025-3-26 03:21:35 | 显示全部楼层
The Kirillov Formula for the Equivariant Index,pecial case of the fixed point formula for the equivariant index of Chapter 6. However, there is another formula, the universal character formula of Kirillov[73], which presents the character not as a sum over fixed points but as an integral over a certain orbit of . in its coadjoint representation
发表于 2025-3-26 07:34:45 | 显示全部楼层
发表于 2025-3-26 11:19:41 | 显示全部楼层
The Family Index Theorem,pose in addition that there is a connection Δ. given on ℰ whose restriction to each bundle ℰ. is a Clifford connection. Let π.ℰ be the infinite-dimensional bundle over . whose fibre at . is the space Γ(.,ℰ.); let D = (D.| z ∈ .) be the family of Dirac operators acting on the fibres of π.ℰ, construct
发表于 2025-3-26 14:40:52 | 显示全部楼层
发表于 2025-3-26 20:05:03 | 显示全部楼层
Nicole Berline,Ezra Getzler,Michèle VergneAs we shift our focus from China to India, we notice that local power structure in the latter is closely linked with the panchayati raj, the key political institutions in the village. This does not mean that CSOs and NGOs do not exist in Indian villages.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 03:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表