找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Head and Neck Tumor Segmentation and Outcome Prediction; Third Challenge, HEC Vincent Andrearczyk,Valentin Oreiller,Adrien Depeu Conference

[复制链接]
楼主: 不让做的事
发表于 2025-4-1 05:35:19 | 显示全部楼层
发表于 2025-4-1 09:28:10 | 显示全部楼层
发表于 2025-4-1 10:55:36 | 显示全部楼层
,Automated Head and Neck Tumor Segmentation from 3D PET/CT HECKTOR 2022 Challenge Report,t model checkpoint. The final submission is an ensemble of 15 models from 3 runs. Our solution (team name NVAUTO) achieves the 1st place on the HECKTOR22 challenge leaderboard with an aggregated dice score of 0.78802 (..). It is implemented with Auto3DSeg (..).
发表于 2025-4-1 18:13:10 | 显示全部楼层
发表于 2025-4-1 20:10:51 | 显示全部楼层
0302-9743 urrent state-of-the-art methods for automatic head and neck tumor segmentation. In the context of this challenge, a dataset of 883 delineated  PET/CT images was made available for training. .978-3-031-27419-0978-3-031-27420-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-4-1 23:22:55 | 显示全部楼层
,Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Ou a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (.) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.
发表于 2025-4-2 05:56:40 | 显示全部楼层
,A Coarse-to-Fine Ensembling Framework for Head and Neck Tumor and Lymph Segmentation in CT and PET metastatic lymph nodes, where we proposed a ensembling refinement model. This framework is evaluated quantitatively with aggregated Dice Similarity Coefficient (DSC) of 0.77782 in the task 1 of the HECKTOR 2022 challenge[., .] as team SJTU426.
发表于 2025-4-2 09:04:44 | 显示全部楼层
,A Fine-Tuned 3D U-Net for Primary Tumor and Affected Lymph Nodes Segmentation in Fused Multimodal Int binary segmentation models are chosen, one for the primary tumor and one for the lymph nodes. During testing, majority voting is applied. Our results show promising performance on the training and validation cohorts, while moderate performance was observed in the test cohort.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 04:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表