找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Head and Neck Tumor Segmentation and Outcome Prediction; Third Challenge, HEC Vincent Andrearczyk,Valentin Oreiller,Adrien Depeu Conference

[复制链接]
楼主: 不让做的事
发表于 2025-3-25 13:45:02 | 显示全部楼层
发表于 2025-3-25 19:31:02 | 显示全部楼层
发表于 2025-3-25 21:25:18 | 显示全部楼层
,Automated Head and Neck Tumor Segmentation from 3D PET/CT HECKTOR 2022 Challenge Report,ymph nodes from 3D CT and PET images. In this work, we describe our solution to HECKTOR 2022 segmentation task. We re-sample all images to a common resolution, crop around head and neck region, and train SegResNet semantic segmentation network from MONAI. We use 5-fold cross validation to select bes
发表于 2025-3-26 03:55:10 | 显示全部楼层
,A Coarse-to-Fine Ensembling Framework for Head and Neck Tumor and Lymph Segmentation in CT and PET lay an important role but their manual segmentations are time-consuming and laborious. In this paper, we propose a coarse-to-fine ensembling framework to segment the H &N tumor and metastatic lymph nodes automatically from Positron Emission Tomography (PET) and Computed Tomography (CT) images. The f
发表于 2025-3-26 04:18:27 | 显示全部楼层
A General Web-Based Platform for Automatic Delineation of Head and Neck Gross Tumor Volumes in PET/ntation method for head and neck primary and nodal gross tumor volumes (GTVp and GTVn) segmentation in positron emission tomography/computed tomography (PET/CT) provided by the MICCAI 2022 Head and Neck Tumor Segmentation Challenge (HECKTOR 2022). Our segmentation algorithm takes nnU-Net as the back
发表于 2025-3-26 11:11:04 | 显示全部楼层
发表于 2025-3-26 13:16:08 | 显示全部楼层
发表于 2025-3-26 17:29:53 | 显示全部楼层
Fusion-Based Automated Segmentation in Head and Neck Cancer via Advance Deep Learning Techniques,when designing therapeutic strategies. We set to automatically segment HNSCC using advanced deep learning techniques linked to the image fusion technique.. 883 subjects were extracted from HECKTOR-Challenge. 524 subjects were considered for the training and validation procedure, and 359 subjects as
发表于 2025-3-26 23:17:04 | 显示全部楼层
,Stacking Feature Maps of Multi-scaled Medical Images in U-Net for 3D Head and Neck Tumor Segmentatihe medical domain, it remains as challenging tasks since medical data is heterogeneous, multi-level, and multi-scale. Head and Neck Tumor Segmentation Challenge (HECKTOR) provides a platform to apply machine learning techniques to the medical image domain. HECKTOR 2022 provides positron emission tom
发表于 2025-3-27 05:12:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 04:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表