找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[复制链接]
楼主: cobble
发表于 2025-3-23 13:27:38 | 显示全部楼层
Transverse Homoclinic Connections for Geodesic FlowsGiven a two dimensional Riemannian manifold for which the geodesic flow has a homoclinic (heteroclinic) connection, we show how to make a .. small perturbation of the metric for which the connection becomes transverse. We apply this result to several examples.
发表于 2025-3-23 15:00:47 | 显示全部楼层
发表于 2025-3-23 19:21:30 | 显示全部楼层
Suspension of Symplectic Twist Maps by HamiltoniansWe extend some results of Moser [17], Bialy and Polterovitch [1], on the suspension of symplectic twist maps by Hamiltonian flows.
发表于 2025-3-24 00:41:04 | 显示全部楼层
Analytic Torsion, Flows and FoliationsWe present an overview of the known results in Lefschetz formulas for flows, that is, on the problem of relating the topology of a manifold to the number and nature of periodic orbits of a vector field.
发表于 2025-3-24 05:49:45 | 显示全部楼层
The Global Phase Structure of the Three Dimensional Isosceles Three Body Problem with Zero EnergyWe study the global flow defined by the three-dimensional isosceles three-body problem with zero energy. A new set of coordinates and a scaled time are introduced which alow the phase space to be compactified by adding boundary manifolds. Geometric argument gives an almost complete sketch of the global phase portrait of this gravitational system.
发表于 2025-3-24 09:10:35 | 显示全部楼层
978-1-4613-8450-2Springer-Verlag New York, Inc. 1995
发表于 2025-3-24 12:02:12 | 显示全部楼层
发表于 2025-3-24 17:08:13 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-8448-9bifurcation; calculus; dynamical systems; hamiltonian system; stability
发表于 2025-3-24 20:15:24 | 显示全部楼层
发表于 2025-3-24 23:40:48 | 显示全部楼层
https://doi.org/10.1007/978-3-030-65343-9der Waals interaction for . = 0, whose orbit manifold is a 2-dimensional sphere. Complementing the work of Alhassid .. and Ganesan and Lakshmanan, we show that the global flow is characterized by three parametric bifurcations of butterfly type corresponding to the dynamical symmetries of the problem.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 13:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表