找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 贫血
发表于 2025-3-23 11:58:33 | 显示全部楼层
发表于 2025-3-23 17:51:52 | 显示全部楼层
,On a Model “Sum of Squares” Operator,We study the real analytic and Gevrey regularity of the solutions to a type of “sum of squares” model operator, see (1), in two variables and obtain a result in agreement with Treves conjecture.
发表于 2025-3-23 20:01:43 | 显示全部楼层
Equality of Commutator Type and Levi Form Type for an ,-Dimensional Bundle,Let . be a smooth real hypersurface in ., and let . be an (.) dimensional subbundle of the CR tangent bundle of .. We prove that the commutator type and the Levi form type associated with . are equal to each other. This answers affirmatively the generalized D’Angelo Conjecture for an (.) dimensional subbundle of the CR tangent bundle.
发表于 2025-3-24 01:50:05 | 显示全部楼层
发表于 2025-3-24 05:57:07 | 显示全部楼层
发表于 2025-3-24 09:25:45 | 显示全部楼层
发表于 2025-3-24 11:45:43 | 显示全部楼层
Geometric Analysis of PDEs and Several Complex Variables978-3-031-69702-9Series ISSN 2524-6755 Series E-ISSN 2524-6763
发表于 2025-3-24 17:35:16 | 显示全部楼层
https://doi.org/10.1007/978-3-658-30401-0nsion . at 0. The image of the Borel map is a subalgebra of the ring of formal power series .: However, the general structure of the image is not yet well understood. In all examples studied so far, the image is given by the tensor product of a ring of formal series with a ring of convergent series.
发表于 2025-3-24 22:16:31 | 显示全部楼层
发表于 2025-3-25 01:49:25 | 显示全部楼层
Star Actors in the Hollywood Renaissance hypersurfaces in complex manifolds and provide some new insight into the CR geometry of such hypersurfaces. Then we establish some new results for the two notions of flatness. Among other things, we prove there exists a family ., parameterized by the real numbers (and, hence, is uncountably infinit
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 02:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表