找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
查看: 30310|回复: 42
发表于 2025-3-21 16:46:15 | 显示全部楼层 |阅读模式
书目名称Groups with the Haagerup Property
编辑Pierre-Alain Cherix,Paul Jolissaint,Pierre Julg
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: ;
出版日期Book 2001
版次1
doihttps://doi.org/10.1007/978-3-0348-8237-8
isbn_softcover978-3-0348-9486-9
isbn_ebook978-3-0348-8237-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
The information of publication is updating

书目名称Groups with the Haagerup Property影响因子(影响力)




书目名称Groups with the Haagerup Property影响因子(影响力)学科排名




书目名称Groups with the Haagerup Property网络公开度




书目名称Groups with the Haagerup Property网络公开度学科排名




书目名称Groups with the Haagerup Property被引频次




书目名称Groups with the Haagerup Property被引频次学科排名




书目名称Groups with the Haagerup Property年度引用




书目名称Groups with the Haagerup Property年度引用学科排名




书目名称Groups with the Haagerup Property读者反馈




书目名称Groups with the Haagerup Property读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:58:58 | 显示全部楼层
Christoph Böhm,Maximilian Hoferated products over finite groups (see also [Jo100] for a different proof of this fact). The third section has a somewhat different flavour: we give a sufficient condition for a finitely presented group to have the Haagerup property and simultaneously be of cohomological dimension at most 2 (in particular the group must be torsion-free).
发表于 2025-3-22 02:02:05 | 显示全部楼层
发表于 2025-3-22 06:39:13 | 显示全部楼层
Discrete Groups,ated products over finite groups (see also [Jo100] for a different proof of this fact). The third section has a somewhat different flavour: we give a sufficient condition for a finitely presented group to have the Haagerup property and simultaneously be of cohomological dimension at most 2 (in particular the group must be torsion-free).
发表于 2025-3-22 09:07:36 | 显示全部楼层
发表于 2025-3-22 13:14:42 | 显示全部楼层
发表于 2025-3-22 19:05:46 | 显示全部楼层
https://doi.org/10.1007/978-3-642-85001-1ay not have the Haagerup property. Hence we may ask whether relative property (T) (with respect to a noncompact subgroup) is the only obstruction to the Haagerup property. It was proved in Theorem 4.0.1 that the answer is positive for connected Lie groups..
发表于 2025-3-22 23:02:04 | 显示全部楼层
Dynamical Characterizations,he four characterizations of this property stated in Chapter 1. The equivalences are spread over [AW81], [BCV95], [Jo100] and [Ju198], and it may be useful to gather them all together in the same place.
发表于 2025-3-23 05:18:12 | 显示全部楼层
Open Questions and Partial Results,ay not have the Haagerup property. Hence we may ask whether relative property (T) (with respect to a noncompact subgroup) is the only obstruction to the Haagerup property. It was proved in Theorem 4.0.1 that the answer is positive for connected Lie groups..
发表于 2025-3-23 08:30:48 | 显示全部楼层
Physical Test Methods for ElastomersFor a second countable, locally compact group .,consider the following four properties:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 07:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表