找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: 烈酒
发表于 2025-3-23 13:23:47 | 显示全部楼层
https://doi.org/10.1007/978-3-319-95252-9In this chapter, we shall extend to compact topological groups many of the properties proved in the case of finite groups. Some properties will be stated without proof.
发表于 2025-3-23 16:19:37 | 显示全部楼层
https://doi.org/10.1007/978-1-4471-4826-5We restrict ourselves to the study of ., that is, to closed subgroups of GL., for a positive integer ., in other words, to groups of real matrices. We adopt the convention, introduced in Chapter ., of calling such a group simply a ..
发表于 2025-3-23 21:46:28 | 显示全部楼层
发表于 2025-3-24 00:09:18 | 显示全部楼层
S. Richard Turner,Robert C. DalyTo study the irreducible representations of the Lie groups . and ., we first study the irreducible representations of their Lie algebra, ., which coincide with those of the complexification, ..
发表于 2025-3-24 05:24:42 | 显示全部楼层
General Facts About Groups,We briefly recall the main concepts in the theory of groups, give examples of finite and of infinite groups, and we define the notion of a group action.
发表于 2025-3-24 10:33:00 | 显示全部楼层
Representations of Finite Groups,In mathematics and physics, the notion of a group representation is fundamental. The idea is to study the different ways that groups can act on vector spaces by linear transformations. In this chapter, unless otherwise indicated, we shall consider only representations of finite groups in . vector spaces.
发表于 2025-3-24 12:50:55 | 显示全部楼层
发表于 2025-3-24 15:41:47 | 显示全部楼层
Lie Groups and Lie Algebras,We restrict ourselves to the study of ., that is, to closed subgroups of GL., for a positive integer ., in other words, to groups of real matrices. We adopt the convention, introduced in Chapter ., of calling such a group simply a ..
发表于 2025-3-24 21:06:54 | 显示全部楼层
发表于 2025-3-25 00:50:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-22 15:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表